
Lecture 09: Fair Locks
COSC 273: Parallel and Distributed

Computing

Spring 2023

Last Week
A Tale of Two Pups

Mutual Exclusion
Safety Goal:

Both dogs are not simultaneously out in the yard
mutual exclusion property

Liveness Goal:

If a dog needs to go outside, eventually one does
deadlock-freedom property

&- bad things don't happen
-

-

men
good thing

eventually happen

- some

- -

Le

A(n Aysmmentric) Protocol I
When Finn needs to go out:

1. Raise !ag

2. While Scott’s !ag is raised, wait

3. Let Finn out

4. When Finn comes in, lower !ag

A(n Aysmmentric) Protocol II
When Ru needs to go out:

1. Raise !ag

2. While Will’s !ag is raised:

1. lower !ag

2. wait until Will’s !ag is lowered

3. raise !ag

3. When Scott’s !ag is up and Will’s is down, release Ru

4. When Ru returns, lower !ag

(Ru)
Scul defers
willE (Finu)

Crucial Observation
Before letting a dog out, both Scott and Will do:

1. raise !ag
2. see other’s !ag down
3. let dog out

Mutual Exclusion & Timelines

Assume bothanaction
& same time

raise let
out

Ve fr·zi,
F

-......
L fe j bothre rd

i
tree

let
raise out

Cr

we know:
Everything
fr frr(ra2fr

Deadlock Freedom
Claim. If a dog wants to go out, eventually some dog will.

Why?

Case 1:no contention -

other flag not raised,
one dog out

case 2:
contention - bothwant

to

90 out

-> Finn goes out

Question
Is the protocol fair?

s 2)

->No:

If both dogs need to go out,

Finn could get to go out

repeatedly and always k
Ru

↳a convince self this is

possible.

Fairness Condition
Safety Goal:

Both dogs are not simultaneously out in the yard
mutual exclusion property

Liveness Goals:

If a dog needs to go outside, eventually one does
deadlock-freedom property

Fairness Condition
Safety Goal:

Both dogs are not simultaneously out in the yard
mutual exclusion property

Liveness Goals:

If a dog needs to go outside, eventually one does
deadlock-freedom property

If a dog needs to go outside, eventually that dog does
starvation-freedom property

-E -

Peterson Lock

Back to Computers
Two processes (threads) want to access a shared resource

e.g., increment Counter object

Assume:

processes have IDs 0 and 1
ThreadID.get() returns the ID of the thread calling
the method

threads share:
boolean[] flag

flag[i] == true if process i wants to use resource
int victim

victim == i if process i is willing to wait (like Ru)

* B

↑ i
=0 or 1

Peterson Lock Idea
Similar to asymmetric protocol with Finn and Ru, but can
switch roles.

To obtain lock:

1. indicate intent: set my flag to true
2. defer to other thread: set myself as victim
3. wait until either

other thread’s !ag is false, or
I am not victim

To release lock:

1. set my flag to false

I safe
to letmydog out

-

L
obtained lock when

no longe waiting

Peterson lock Pseudocode
public void lock() {
 int i = ThreadID.get(); // get my ID, 0 or 1
 int j = 1 - i; // other thread's ID

 flag[i] = true; // set my flag
 victim = i; // set myself to be victim
 while (flag[j] && victim == i) {
 // wait
 }
}

2
other

1:
am victim

flag is up

"Obtained lock"when locke

returns

Peterson unlock Pseudocode
public void unlock() {
 int i = ThreadID.get();

flag[i] = false;
}

Application:
(1) call lock(critical

Aemutexstuff asection
(3) call unlock

Goals
Mutual Exclusion. If both threads concurrently call
lock(), then both cannot return until other calls
unlock().

Starvation Freedom. If thread i calls lock() then
eventually thread i returns.

Question. Why does Peterson lock achieve these
properties?

Proof of Mutual Exclusion I
Suppose not…

 and concurrently call lock()
both return before other calls unlock()

In this case we say both threads enter critical section

A B

Wantto avoid
-

Proof of Mutual Exclusion II
Atomic operations:

Actions of :

 writes flag[A] = true
 writes victim = A
 reads flag[B]
 reads victim

Actions of :

 writes flag[B] = true
 writes victim = B
 reads flag[A]
 reads victim

A
(A.1)
(A.2)
(A.3)
(A.4)

B
(B.1)
(B.2)
(B.3)
(B.4)

Proof of Mutual Exclusion III
Suppose :

i.e., wrote to victim last

if not, continue argument with roles of and reversed

(B.2) → (A.2)
A

A B

Timelines
must reac

mustread A
true ↓

sayit stay
in loop

A I-

NA, ↑92 as don't enter
↳ , <b2 by crit." ↳B-
flaytB] victim read reac section?
-true is flaq[A] victim

->both threads do not
-

return (enter C.S.)
before other unlocks.

Conclusion I
The Peterson lock satis"es mutual exclusion!

Starvation Freedom I
Claim. If thread calls lock(), eventually the method will
return.

Case 1. reads flag[B] == false or victim == B.

A

public void lock() {
 int i = ThreadID.get(); // get my ID, 0 or 1
 int j = 1 - i; // other thread's ID
 flag[i] = true; // set my flag
 victim = i; // set myself to be victim
 while (flag[j] && victim == i) { /*wait*/ }
}

A

Starvation Freedom II
Claim. If thread calls lock(), eventually the method will
return.

Case 2. reads flag[B] == true and victim == A.

A

public void lock() {
 int i = ThreadID.get(); // get my ID, 0 or 1
 int j = 1 - i; // other thread's ID
 flag[i] = true; // set my flag
 victim = i; // set myself to be victim
 while (flag[j] && victim == i) { /*wait*/ }
}

A

Starvation Freedom III
Assumption. Once thread B obtains lock, eventually B calls
unlock()

What then happens to thread A?

public void unlock() {
 int i = ThreadID.get();

flag[i] = false;
}

Conclusion II
The Peterson lock satis"es starvation freedom!

Next Time
Locks for more threads!

