
Lecture 06: Mutual
Exclusion

COSC 273: Parallel and Distributed
Computing

Spring 2023

This Week
1. Written Homework 01 Due Friday

can work in groups of up to 3

2. Today/Wednesday: Mutual Exclusion (pen & paper)

3. Friday: Locality of Reference (bring laptop)

-

Outline
1. Counter Example
2. Mutual Exclusion

Proposed Last Time
Fix Counter issue by locking the count

To increment the Counter:

1. check if Counter is locked
if so, wait until it is unlocked

2. lock the Counter
no other thread can modify while locked

3. increment the counter
4. unlock the Counter

An Attempt
public class LockedCounter {
 long count = 0;
 boolean locked = false;
 public long getCount () { return count; }
 public void increment () { count++; }
 public void reset () { count = 0; }
 public void lock (int id) {

while (locked) { }
locked = true;

 }
 public void unlock () { locked = false; }
 public boolean isLocked () { return locked; }
}

1

Running the Locked Counter
 public void run () {

for (long i = 0; i < times; i++) {
 counter.lock(id);
 try {

counter.increment();
 }
 finally {

counter.unlock();
 }

}

· -

mythansee lock
N

in -
release lock

Will It Work?

LockedCounterTester
Demo!

Question
What happened?

 public void lock (int id) {
while (locked) { }
locked = true;

 }

Init: locked =false

4

T0

false t
->false↑ourire'lockend

Morals
1. Empirical testing is not enough!
2. Must understand correctness formally
-

Correct Behavior
If multiple threads try to increment at a time:

exactly one thread gets to increment at a time
other threads wait until increment completed

Terminology
We want our Counter to satisfy mutual exclusion.
-

A Parable

A Shared Resource
Professor (Scott) Alfeld and I are neighbors
For purposes of today’s lecture, say we share a backyard
We have dogs: Finnnegan (my dog), Ruple (Scott’s dog)
Sadly, our dogs don’t get along

they used to, but not anymore
we don’t know why

Finn and Ruple

A Question
How can Scott and Will ensure that we don’t let Finn and
Ruple out in the yard at the same time?

don’t like bothering each other with a text/phone call
shouldn’t have to “actively” communicate unless both
dogs need to go out
have a way of passively signaling intent

use !ags!
each has a !ag that can be raised or lowered
can see the state of each other’s !ags

A Picture

ILast I
& 1.
flags upor "down"

Our Goals
Safety Goal:

Both dogs are not simultaneously out in the yard
mutual exclusion property

Liveness Goal:

If both dogs need to go outside, eventually one does
deadlock-freedom property

Note: getting mutual exclusion and deadlock-freedom
separately is easy!

-,

A First Protocol: Flag if Out
1. Look to see if other !ag is raised.

if so, wait until not raised

2. If not, raise !ag then let dog out

3. When dog comes in, lower !ag

Question. Does this work?

No

(1) bothlook atflags
see flag down

(27 both raise flags

(3) both let dogs
out#

no ntex

A Bad Execution:
1. We both look at (approximately) the same time and see

others’ !ag is down.

2. We both raise !ags as (approximately) the same time.

3. We both let dogs out at the same time.

A Second Protocol: Flag Intent
1. Raise !ag.

2. Check if other !ag is up
if so, wait until not raised

3. If other !ag is down, let dog out!

4. When dog returns, lower !ag.

Question. Does this work?

C1) Both raise

(2) Both wait.... indefinitely

-no chadlock freedom

a deadlock!)

Another Bad Execution
1. Both raise !ag at (approximately) same time.

2. Both see other’s !ag raised.

3. Both wait… neither dog ever goes outside!

More Generally
Both protocols are symmetric

Scott and Will behave the same way according to what
we see

Can a symmetric protocol possibly work?

For Any Symmetric Protocol
Suppose we act simultaneously:

1. start in same state

2. perform same action

3. see that other performed same action

4. respond in same manner

5. …

This continues inde"nitely, so either

we both let dogs out at same time, or
neither dog goes out ever

Apparently
We need an asymmetric protocol

Under contention, give Finn priority
Scott agrees with this

Note. Symmetry breaking is a common theme in
parallel/distributed computing.
-

Third Protocol
Separate protocols for Will and Scott

Will’s Protocol
When Finn needs to go out:

1. Raise !ag

2. While Scott’s !ag is raised, wait

3. Let Finn out

4. When Finn comes in, lower !ag

Scott’s Protocol
When Ru needs to go out:

1. Raise !ag

2. While Will’s !ag is raised:

1. lower !ag

2. wait until Will’s !ag is lowered

3. raise !ag

3. When Scott’s !ag is up and Will’s is down, release Ru

4. When Ru returns, lower !ag

[

Does Third Protocol Work?
Do we get mutual exclusion?
Do we get get deadlock-freedom?

Crucial Insight
If both Scott and Will:

1. raise !ag, then
2. look at other’s !ag

then at least one of us will see other !ag raised

always check other’s !ag before letting dog out
both dogs not out at same time

raise 100k

n >
raise

s-on,
TIME

More Formally
If we want to prove mutual exclusion property

argue by contradiction
suppose that at some time, both dogs were out
what could have led us there?

-

Property of Both Protocols
Before letting a dog out, both Scott and Will do:

1. raise !ag
2. see other’s !ag down
3. let dog out

(Im)possible Timelines
raise see

otherleftout
down

W-Is

S+13
raise sees

other lef
Ru

f109 down
Out

Conclusion
If both Finn and Ru are in yard at same time, Will or Scott
must not have followed the protocol!

This establishes mutual exclusion property.

What About Deadlock-Freedom?
If both Finn and Ruple want to go out

1. Both Will and Scott raise !ags
2. Eventually, Scott sees Will’s !ag

lowers his !ag (sorry Ru)
3. Eventually, Will sees Scott’s !ag down
4. Finn goes out!

Nice!
This protocol gives mutual exclusion and deadlock-
freedom…

