
Lecture 04: Embarrassingly
Parallel, or Not

COSC 272: Parallel and Distributed
Computing

Spring 2023

3

Announcements
1. Programming Assignment 01 Posted

ignore HPC cluster part of assignment for Friday
accounts registered, but no documentation yet
visit
ssh access: [amherstid]@hpc.amherst.edu

2. First written assignment next Friday
posted this weekend

3. O!ce Hours
TA (Mary Kate) O!ce Hours Wednesday 7–9pm,
SCCE C109
My individual OH: Thursday 1:00–2:30

hpc.amherst.edu

-

- 7

-

Outline
1. Lecture 03 Activity
2. Parallelism vs Concurrency
3. Embarrassingly Parallel Problem
4. Limitations of Parallelism

Lecture 03 Activity
void increment(int[] a) {
 int i = 0;
 while (i < a.length) {
 a[i] = a[i] + 1;
 i = i + 1;
 }
}

sharedbetween
threads

5L
*
thread 10(a) variable

- increment ith value
07 a

Question 1
If a = [0, 0, 0, 0] and two threads, what are possible
outcomes?

void increment(int[] a) {
 int i = 0;
 while (i < a.length) {
 a[i] = a[i] + 1;
 i = i + 1;
 }
}

1 -
T1[0,x,x,*]
ratisnation

each star could
-

be D or 2
ins I

write I
↳> wi, I

Question 2
If a = [0, 0, 0, 0] and threads, what are possible
outcomes?

k

void increment(int[] a) {
 int i = 0;
 while (i < a.length) {
 a[i] = a[i] + 1;
 i = i + 1;
 }
}

⑭Expo

each inclex couldstore -any
value from 1tk

k =10 how toget6?(a(03)
- first 5threads recline/write
in succession time then

- last 5 threads all readall writh

Parallelism vs Concurrency
Concurrency performing multiple tasks that occupy
overlapping time intervals

E.g., I teach COSC 225 and COSC 273 concurrently
Jan 30 May 15

I#
Will

Day:weds (S*
225

Parallelism vs Concurrency
Concurrency performing multiple tasks that occupy
overlapping time intervals

E.g., I teach COSC 225 and COSC 273 concurrently

Parallelism making progress on multiple tasks at the same
time

E.g., COSC 273 and MATH 410 are taught in parallel
(MWF 10-10:50)
parallel concurrent⟹
-- 3)

wed

↑
10 AM

Virtues and Perils
Parallelism can give performance boost

performance is one focus of this class

Virtues and Perils
Parallelism can give performance boost

performance is one focus of this class

Concurrency is necessary for basic functionality of
computers

cannot execute multiple programs without concurrency
operating system typically handles issues of
concurrency

why you probably haven’t encountered concurrency
before

Virtues and Perils
Parallelism can give performance boost

performance is one focus of this class

Concurrency is necessary for basic functionality of
computers

cannot execute multiple programs without concurrency
operating system typically handles issues of
concurrency

why you probably haven’t encountered concurrency
before

Issues of nondeterminism exist for concurrent programs,
not just parallel ones
-

Back to Counter

How could we !x the problem of mis-counting?

Want every increment to count!

public void increment () {
 ++count;
}

O(n") ->O(Y

- Threads have own local

counter

- atend, accumulatevalue

“Easy” Solution
Each thread stores own private count!

run threads until they’re done
aggregate local counts when threads terminate

Question
When might “easy” solution not be su!cient?

1. Mightneed intermediate

counts

2. Counts couldbe on-going
240 fixedtermination)

3, diff threads see count

during exec.

Question
When might “easy” solution not be su!cient?

We’ll revisit this next week

Embarrassingly Parallel Problems
A computational problem is embarrassingly parallel if it
can be broken into many simple computations, (almost)
all of which can be performed in parallel.

Thas-Thread
mery

Example: Monte Carlo
Estimation

A Formula from High School

Area of a disk: A = πr2

·
-

7

122r ->1

4 3.1415926535...

An Idea from Probability
Pick a random point inside the framed region.

The probability the point lies in the disk is proportional to
the disk’s area.

Probability
Asquare:

barf hits X xX 4r2
circle 4 *

X A circ:
Area C *

=

areasq x
X

*

*

4r2

*

= Ev(=1i 2r-1

In More Detail
area of disk is

area of surrounding square is
the probability that a (uniformly) random point in the
square lies in the disk is:

so…

πr2

(2r = 4)2 r2

= = π.area of circle
area of square

πr 2

4r 2
1
4

Estimation by Sampling
…to estimate , su!ces to estimate the probability that a
random point point in the square lies inside the disk:

pick a bunch of random points
see how many lie in disk

 proportion of points that do

Example of Monte Carlo method

π

p =
π ≈ 4p

Question
Why is Monte Carlo estimation embarrassingly parallel?

Another Question
How much performance increase with cores?k

Another Question
How much performance increase with cores?k

What if number of samples taken?k ≈

Not So Parallel
Dependencies?

a1 = b1 + c1;
a2 - b2 + c2;
d = a1 * a2

Not So Parallel
Dependencies?

a1 = b1 + c1;
a2 - b2 + c2;
d = a1 * a2

Dependency relation: directed acyclic graph (DAG)

More Generally
Consider a program that requires

 elementary operations

 time to run sequentially

Suppose

a -fraction of operations can be performed in parallel

 fraction must be performed sequentially

Question: how long could program take with parallel
machines?

N
T

p
1 − p

n

Idea
With parallel machines:

perform -fraction of parallelizable ops in parallel on all
 machines

total time

perform remaining ops sequentially on a single machine
total time

Total time:

n
p

n
T⋅p
n

T ⋅ (1 − p)
T ⋅ (1 − p) + T ⋅ = T ⋅ (1 − p +)p

n
p
n

How Much Improvement?
The speedup is the ratio of the original time to the
parallel time :

This relation is called Amdahl’s Law

T
T ⋅ (1 − p +)p

n

S = 1
1−p+ p

n

How Much Improvement?
The speedup is the ratio of the original time to the
parallel time :

This relation is called Amdahl’s Law

T
T ⋅ (1 − p +)p

n

S = 1
1−p+ p

n

This is the best performance improvement possible in
principle

may not be achievable in practice!

Example
1 person can chop 1 onion per minute

Recipe calls for:

chop 6 onions
saute onions for 4 minutes

Note:

chopping onions can be done in parallel
sauteing

takes 4 minutes no matter what
must be accomplished a"er chopping

Example (continued)
How much can the cooking process be sped up by cooks?n

Example (continued)
For one chef,
Only chopping onions is parallelizable, so

Amdahl’s Law:

So:

Always have

T = 6 + 4 = 10

p = 6/10 = 0.6

S = =1
1−p− p

n

1
0.4+ 0.61

n

n = 2 ⟹ S = 1.43
n = 3 ⟹ S = 1.67
n = 6 ⟹ S = 2

S < 1/(1 − p) = 2.5

Speedup Improvement by Adding
More Processors

Second processor: 43%
Third processor: 17%
Fourth processor: 9%
Fi"h processor: 6%
Sixth processor 4%

Latency vs Number of Processors
How does latency scale with ?

Adding more processors has declining marginal utility:
each additional processor has a smaller e#ect on total
performance
at some point, adding more processors to a
computation is wasteful

Another consideration:
a"er parallel ops have been performed, extra
processors are idle (potentially wasteful!)

T n

Remarks
The proportion of parallelizable operations is not always
obvious from problem statement

p

Remarks
The proportion of parallelizable operations is not always
obvious from problem statement

p

Amdahl’s law a valuable heuristic for general
phenomena:
1. an -fold increase in parallel processing power does

not typically give an -fold speedup in computations
2. adding new parallel processors becomes less helpful

the more parallel processors you already have

n
n

Remarks
The proportion of parallelizable operations is not always
obvious from problem statement

p

Amdahl’s law a valuable heuristic for general
phenomena:
1. an -fold increase in parallel processing power does

not typically give an -fold speedup in computations
2. adding new parallel processors becomes less helpful

the more parallel processors you already have

n
n

O"en helpful to think about scheduling subtasks (not
individual operations)
May have relationships between tasks (e.g., one must be
performed before another)

Next Time
Start Mutual Exclusion

How can we $x our Counter to work as intended if we
need to maintain a running count that can be accessed
by multiple threads?

