Lecture 03: RAM, PRAM,
and Threads

COSC 278: Parallel and Distributed
Computing

Spring 2023

Announcement

Programming Assignment 1 posted soon

e due next Friday
e use HPC cluster

Last Time
A CounterkExample Mystery!

What happens when multiples threads call increment()?

increment () {

++count;

Aasf Vne Covmber cAuss

Today

1. Random Access Machines (RAM)
2. Parallel Random Access Machines (PRAM)
3. Reasoning about all possible executions

Terminology

Program: sequence of instructions to be carried out by a

computer

e specified by programmer through code

Process: a'computing entity“that can carry out instructions
specified in a program

e e.g., CPU or CPU core

Execution: a sequence of operations performed by a set of
processes

e accounts for interactions between processes
e specifies actual order in which operations are performed

CPU/Memory Interactions

Random Access Machine (RAM) model interactions:

. ;ead!a value from memory address

»]oad value into CPU register
e writela value to memory address

| . o
= copy value stored in CPU register SUAT «
— LSQ\IV\
BP0
Co !
\,XL& — oo W
A S u U [oddres
9&6(&&‘%9 / ‘:[1 qd\:cy
S LeqaeS LS
Yo V¥ e MUMO*I‘)/ l MLy
N R — \ocusﬁon

Counter Example, 1 thread

e Counter object is stored in memory
= Counter stores a value count
e CountThread instructions stored in memory

e When CounterThread is executed, it follows these
instructions

(i =0; i < times; i++) {

counter.increment();

e In turn:

increment () { ++count; }

Question

What are CPU/Memory interactions when
counter.increment() is executed?

increment () { ++count; }

—

. @\C—Wmﬁq Josk W 7\\/*“{'/?

W Val o w».wocy[V"(LV“O‘Z‘/

o (\2.0\& ok -Qf W W.WQJY " C?\«

Multicore Architecture WV

Modern computers:

e multiple cores
» think of them as separate, independent CPUs

= different cores can execute different threads
simultaneously

e shared memory | T
‘/Q\)\A C/P\/\ g ., QP\I\ Z

Sxtk
T

|

PRAM model
Parallel Random Access Machine (PRAM)

e Abstract model for parallel computing

e Shared memory: cells w/ addresses
= think one giant array

e Multiple processors access memory

= basic operations arelﬁad(ﬂ anc{irite(i, val]

PRAM Assumptions

e read/write operations aret‘,atomizﬂ
Nondeterminism: —~ |

e if multiple threads access same memory location
concurrently all “consistent” outcomes algs £ossible

T\

= two processes callwrite(i, a) andwrite(i, b)

] : velus T X

Weedigwn loesdion Vol

SRV R ' C fay2e$
Tesa\k Loy | ocetion e N
= one process calls[read (1 anotherwlte(l, a)

Pev. Velur 5 b ofF W - YL

v Shoved Volua
A Sl conwent o o

{Q“‘& /\'J[\L/L | * Ceod Vedroo
Coold b2 b or

L

Multicore Counter Example

e two threads perform increment operation

e threads both try to increment same Counter
concurrently

increment () { ++count; }

Question

Suppose: count = 7 & two threads both call increment()
concurrently

What are the possible executions? What are possible
outcomes/results? ——
WN\C mc

L PE e)
. A0\C WL [L — —— coumt
0 \IJ(.(“’-L w{\w
‘ = Rec 7-—‘
EKQ-Q (j/ ‘< Ca < - ’r(,O\C&
D fead me¥ i ~ e
‘ ,(Q_q\.(x = = - CK \VQQ(&
c \L)‘(\ \"‘(_ 6 \)J{ \SC‘Q

PRAM and Threads

PRAM model allows for all processes to access/modity all
memory

e can choose to partition/allocate memory to individual
processes as well

e shared memory used only when necessary
= 1.€., processes must interact/communicate

Thread-local variables

Each thread can have variables that only it accesses

e these are thread-local variables

CounterThread Runnable {
Counter counter; times;
CounterThread (Counter counter, times) {

.counter = counter; .times = times;

run () {

(i =0; 1< times; i++) {

counter.increment();

Lecture 03 Activity

increment ([1 a) {

i=0;
(L < a.length) {
a[i] = a[i] + 1;

i=1+1;

Question 1

Ifa = [0, 0, 0, 0] and two threads, what are possible
outcomes?’

increment ([1 a) {

i=0;
(L < a.length) {
a[i] = a[i] + 1;

i=1+1;

Question 2

Ifa = [0, 0, 0, 0] and k£ threads, what are possible
outcomes’

increment ([1 a) {

i=0;
(L < a.length) {
a[i] = a[i] + 1;

i=1+1;

Back to Counter

How could we fix the problem of mis-counting?

e Want every increment to count!

Next Week

1. Embarrassingly parallel computation
e Programming assignment 01

2. Limits of Parallelism

3. Mutual Exclusion

