
Lecture 03: RAM, PRAM,
and Threads

COSC 272: Parallel and Distributed
Computing

Spring 2023

3

Announcement
Programming Assignment 1 posted soon

due next Friday
use HPC cluster
-

Last Time
A CounterExample Mystery!

What happens when multiples threads call increment()?

public void increment () {
 ++count;
} ↑

class var counter class

Today
1. Random Access Machines (RAM)
2. Parallel Random Access Machines (PRAM)
3. Reasoning about all possible executions

Terminology
Program: sequence of instructions to be carried out by a
computer

speci!ed by programmer through code

Process: a computing entity that can carry out instructions
speci!ed in a program

e.g., CPU or CPU core

Execution: a sequence of operations performed by a set of
processes

accounts for interactions between processes
speci!es actual order in which operations are performed

CPU/Memory Interactions
Random Access Machine (RAM) model interactions:

read a value from memory address
load value into CPU register

write a value to memory address
copy value stored in CPU register

-

Δ val
COPY
from req

COPY
location

from rom.
revailswrite 40

memory

value --

acidres,sister#w-ackresmemory
in CPU location

Counter Example, 1 thread
Counter object is stored in memory

Counter stores a value count
CountThread instructions stored in memory
When CounterThread is executed, it follows these
instructions

In turn:

for (long i = 0; i < times; i++) {
 counter.increment();
}

public void increment () { ++count; }

Question
What are CPU/Memory interactions when
counter.increment() is executed?

public void increment () { ++count; }

* read count from memory-

=> ↳crement just CPU ↓I↑
· with new val to memory memory

Multicore Architecture
Modern computers:

multiple cores
think of them as separate, independent CPUs
di"erent cores can execute di"erent threads
simultaneously

shared memory

M

-..r

⑭ideffsth

PRAM model
Parallel Random Access Machine (PRAM)

Abstract model for parallel computing
Shared memory: cells w/ addresses

think one giant array
Multiple processors access memory

basic operations are read(i) and write(i, val)⑥

PRAM Assumptions
read/write operations are atomic

Nondeterminism:

if multiple threads access same memory location
concurrently all “consistent” outcomes are possible

two processes call write(i, a) and write(i, b)

one process calls read(i) another write(i, a)

*

P1 P2

↑ *M
↑

value
location location value

Result: memory location I stores
Pl a 05 b after.
⑥ -

prev. Value Was b at (xi - P2

After concurrenta
storedvalue
is a

read/write I
a read value

couldbeora

Multicore Counter Example
two threads perform increment operation
threads both try to increment same Counter
concurrently

public void increment () { ++count; }

Question
Suppose: count = 7 & two threads both call increment()
concurrently

What are the possible executions? What are possible
outcomes/results?

Pl: P2: ↑
. read read t uf
· inc
-

Exe
iw con*.· write

read
- count
read

3
count 3 write·read -> =

= a read
write ⑧ write
i write

PRAM and Threads
PRAM model allows for all processes to access/modify all
memory

can choose to partition/allocate memory to individual
processes as well
shared memory used only when necessary

i.e., processes must interact/communicate

Thread-local variables
Each thread can have variables that only it accesses

these are thread-local variables

public class CounterThread implements Runnable {
 private Counter counter; private long times;
 public CounterThread (Counter counter, long times) {

this.counter = counter; this.times = times;
 }

 public void run () {
for (long i = 0; i < times; i++) {
 counter.increment();
}

 }
}

Lecture 03 Activity
void increment(int[] a) {
 int i = 0;
 while (i < a.length) {
 a[i] = a[i] + 1;
 i = i + 1;
 }
}

Question 1
If a = [0, 0, 0, 0] and two threads, what are possible
outcomes?

void increment(int[] a) {
 int i = 0;
 while (i < a.length) {
 a[i] = a[i] + 1;
 i = i + 1;
 }
}

Question 2
If a = [0, 0, 0, 0] and threads, what are possible
outcomes?

k

void increment(int[] a) {
 int i = 0;
 while (i < a.length) {
 a[i] = a[i] + 1;
 i = i + 1;
 }
}

Back to Counter
How could we !x the problem of mis-counting?

Want every increment to count!

Next Week
1. Embarrassingly parallel computation

Programming assignment 01
2. Limits of Parallelism
3. Mutual Exclusion

