
Lecture 18: Typesetting II
COSC 225: Algorithms and Visualization

Spring, 2023

-

Final Project Timeline
Friday, April 14: Group/Project registration
Monday, May 1: Working prototype, critique in class
Wednesday, May 10: Final submission
Friday, May 19: Peer reviews due

to
up

-
-

-

-

Today
Typesetting II: Breaking paragraphs into lines

1. Recap: greedy line breaking
2. Quantifying “raggedness”
3. Activity: greedy line breaking
4. Finding optimal line breaks

Last Time
Breaking paragraphs into lines

Input:

TEXT as a string
LINE_WIDTH

Output:

Placement of each word from TEXT typeset on the screen

Requirement

No line of typeset text is wider than LINE_WIDTH

-

Example Input

-

- W
-

Example Output

>

Greedy Breaking Procedure
Idea:

scan through words of text sequentially
add words to the current line until adding next word
would exceed LINE_WIDTH
start a new line with next word

Details

dealing with !rst word of paragraph (paragraph indent)
dealing with !rst word of other lines (no indent)
dealing with last line

Greedy Breaking Code
let curLine = createLine();
for (let s of spans) {
 let width = s.getBoundingClientRect().width;
 if (!firstWord) { width += WORD_SEP * em; }
 if (curWidth + width <= TEXT_WIDTH) {
 curLine.appendChild(s);
 curWidth += width; firstWord = false;
 } else {
 parent.appendChild(curLine);
 curLine = createLine();
 curLine.appendChild(s);
 curWidth = width - WORD_SEP * em;}}

* each line a dir

*- elts for each word
t

-
-en

[
E to4
- line

I ·I add
cur

-> E

Some Questions
1. Is there a sensible alternative method for choosing line

breaks?
2. What “better” outcomes might we want?

Critique This Paragraph

↑E

Is This Better?

#

Quantifying Raggedness
Aesthetic Goal. Minimize the raggedness of the paragraph.

-> minimize variation in whitspace
-
-

trailing
differenc between line and

boxwidth

-> minimize diff between

shortestlength - longestlength

Quantifying Raggedness
Aesthetic Goal. Minimize the raggedness of the paragraph.

Question. How to quantify raggedness?

Knuth, Again
Associate a penalty to each line break:

the excess is the amount of trailing whitespace

the penalty of the line is

The penalty of the whole paragraph is the sum of
penalties of all of the lines excluding the last line.

x
x2

-
I

↳ -> - 9

- 16:
-

9#1
x ==

-

=

Penalty Example
excess penalty

-> xxxX x 4
-> x xx xx4
x x x xx x I

xx xxx x x

X X
-

total b

penalty

Our Goal
Find the line breaks for the paragraph that minimize the
total penalty of the paragraph.

Why This Penalty
Question. Why is a penalty of sensible? How does
penalty relate to raggedness?

x2

-R xi x+x

Eai

I

I (xi)+(xi).In
Fact. For fixed total amountof
-

whitespace, perfectly
even lines

minimizes the total penalty

Activity
Typeset a short paragraph by hand!

Greedy Penalty
TODAY WE WILL TRY TRY AGAIN

excess penalty

To D A Y- WE a 0

WI 2 2 TRY O 0

-

TRY- 5 25

A G A I N -

250

Smaller Penalty?
TODAY WE WILL TRY TRY AGAIN

TODAY -
3 9
I

WE WIC L

TRY TR Y I I
I

A G A =N

⑰

Greedy Penalty Example

is

Optimal Penalty Example

↳

An Algorithmic Challenge
Input.

array of word lengths
whitespace parameters
text width

Output.

locations of line breaks that will minimize the total
penalty of the paragraph

Question
How can we !nd the optimal line breaks given the input
parameters?

Recursion?

options:break
& our word

or not?

Top down along lines?

A Basic Task
Given indices i and j with i < j, what is the penalty of a
line containing words w[i], w[i+1],..., w[j]

call this penalty(i, j)

w array ofwords

execess

Eiti+3))...(wi5I 2

(Width of box - sum of word
wictus inc. waiti

A Basic Task
Given indices i and j with i < j, what is the penalty of a
line containing words w[i], w[i+1],..., w[j]

call this penalty(i, j)
Question. Must we compute penalty(i, j) for all i and
j?

Eit-(wtis//,
-

Only need to consider is I

where total widthof words

is < text block (ie: the

Two Line Penalty
Question. Suppose we know penalty[0, i] for all i up to
j. How could we !nd the minimum penalty line break for
the !rst two lines setting words 0..j?[]

W0] ...I *13 --

iterate i=0 to 5-1

curPenalty 5 penalty (0, i)
↓Penalty (it, is

min Penalty I min) minPenalty, curP.)

More Generally
Compute: array minPenalties

minPenalties[j] stores the minimum total penalty of
line breaks ending with a line break at j.

Question. Given minPenalties[0..j-1] and penalty(i,
j), how can we determine minPenalty[j]?

-

In
3
-

Penalty
-Wii] L

is*wet
mini-

word I - line ending
in - WI Wii]
line I
~ (min Penaltyti-1]

+Panaltli,malty
(i,i)

I
anc settrattake min value of these minP[i]

Bootstrapping
Question. Given minPenalties[0..j-1] and penalty(i,
j), how can we determine minPenalty[j]?

Observe. The minimal penalty of breaking at i and j is:

minPenalty[i-1] + penalty(i, j)
-

prev Time ncur
lines ending wI S

Bootstrapping
Question. Given minPenalties[0..j-1] and penalty(i,
j), how can we determine minPenalty[j]?

Observe. The minimal penalty of breaking at i and j is:

minPenalty[i-1] + penalty(i, j)
So. The minimum possible penalty of breaking at j is the
minimum of:

minPenalties[j-1] + penalty(j, j)
minPenalties[j-2] + penalty(j-1, j)
minPenalties[j-3] + penalty(j-2, j)
minPenalties[j-4] + penalty(j-3, j)
...

i wil

A Name
This technique for !nding the optimal solution is called
dynamic programming

Exercise
Find the minimum penalty line breaking for typesetting
TODAY WE WILL TRY TRY AGAIN in a paragraph of line
width 8.

Line Breaking Demo

