
Lecture 16: Drawing General
Graphs II

COSC 225: Algorithms and Visualization

Spring, 2023

Announcements
1. Assignment 07 posted, due Friday
2. Quiz Next Monday

Apply Tidy Tree algorithm by hand
3. Assignment 08 posted soon, due next Friday
4. Limited OH This Week (advising week)

No OH today
No OH on Thursday

↳

Outline
1. AVSDF Circular Layouts
2. Force-directed Graph Layout

Goals
From Fruchterman and Reingold (1991):

1. Distribute the vertices evenly in the frame.
2. Minimize edge crossings.
3. Make edge lengths uniform.
4. Re!ect inherent symmetry.
5. Conform to the frame. ↳

Last Time: Circular Layouts

Simpler Challenge: pick an order for vertices

0 O

⑧ ⑧
(2x,y)

0 -o·00 0

00

Mäkinen Procedure
1. Find two vertices of highest degree and add them to

left/right sets
2. Repeat until all vertices are added to left or right:

compute (right neighbors) - (left neighbors) for
each vertex
add vertex with largest value to right
add vertex with smallest value to left

3. Add left vertices on le" side, right on right side

of neighbors
E

-

Mäkinen Results: Before

Mäkinen Results: A"er

2"left"

-

AVSDF Heuristic
Adjacent Vertex Smallest Degree First

He & Sykora

Idea:

perform depth-#rst search, starting from vertex of
minimal degree
always explore minimum degree neighbor #rst

-
·

-3

-
-

-9 im
I
was lowest

dey of
neighbors
of

first
vH

AVSDF Example
1: 2, 6, 3, 5
2: 1, 3, 5, 6
3: 1, 2, 6
4: 2, 5
5: 1, 2, 4
6: 1, 3

->

=
-

-

I

->

*-4
⑧b 2 a9
-

How To Implement AVSDF E$ciently
What do we keep track of and store?
How do we update data structures?
How e$cient is the procedure
->for DFS maintain a stack

-> array/list/whatever of

visited hocks in order

visited

AVSDF Initialization
const order = [];
const stack = [];
const vertices = this.graph.vertices;
const n = vertices.length;
const placed = new Array(n).fill(false);

vertices.sort((u, v) => {
 return u.degree() - v.degree();
});

stack.push(vertices[0]);

--

-- final ordering on

I active vertices vtXs
-

-

A placed [i]==true if we've

-
W visited vix al

I -- id i.
&sort vertices by increasing degree

-

Main Loop
while (stack.length > 0) {
 let vtx = stack.pop();
 if (!placed[vtx.id]) {
 order.push(vtx);
 placed[vtx.id] = true;
 vtx.neighbors.sort((u, v) => {
 return v.degree() - u.degree();
 });
 for (let nbr of vtx.neighbors) {
 if (!placed[nbr.id]) { stack.push(nbr); }
 }}}

.
=current ty
Ihave notyetplaced

vH

blogleen
sort vix's nbus

inter largest to smallest
-

I chey push ubus
H youto stalargestto- smallestdeg.
n?? each vfx only popped of stack

2

E once N

↳Dun t Momm
-toyn

Running Time of Main Loop?
vertices, edgesn M

--...
deg(u) dey(vz) dey(un)

M(,)(e)- ... te=2m

↑

When Will Algorithm Fail?

2m

V
. "o
I

wontget
drawn

If graph is disconnected

fix->run same procedure for
each connected comp.

1: Random Circular

2: Mäkinen Circular

3: AVSDF Circular

0

I
O

⑧ 0

AVSDF Demo

Force-Directed Layout

A Di%erent Approach
Don’t place vertices explicitly

Instead:

associate graph with a physical system
simulate the physical system
let system evolve
place vertices at #nal location according to evolution

Goals, Again
From Fruchterman and Reingold (1991):

1. Distribute the vertices evenly in the frame.
2. Minimize edge crossings.
3. Make edge lengths uniform.
4. Re!ect inherent symmetry.
5. Conform to the frame.

*

vertices

I repel
another

ove
-

edges
pull endpoints

Physical Simulation
1. All vertices should repel each other

2. Adjacent vertices should attract each other

Due to:

Eades, 1984
Fruchterman and Reingold, 1991

we’ll follow this paper

0+-0

⑧

-
s-
0

u

Competing Forces
All vertices:

function repulsiveForce (dist, k) {
 return k * k / dist;
}

function attractiveForce (dist, k) {
 return dist * dist / k;
}

* dit-

k some param

"
I

farther apart ->
less repulsion

↑
further apart ->

stronger pull

Question
When do attractive and repulsive forces cancel out for
adjacent vertices?

function repulsiveForce (dist, k) {
 return k * k / dist;
}

function attractiveForce (dist, k) {
 return dist * dist / k;
}

I

->

-a dis
t

Itdist-> I

==> K =dist

F&R Main Loop
For each vertex:

compute net force on that vertex
#nd repulsive contribution from each other vertex
#nd attractive contribution from each neighbor
sum all contributions

move each vertex according to net force
move in direction of net force
amount is min of net force and “temperature”

update temperature

Repeat until “done”

-

↳ ↑
max movement

-

under any
force

Setting Parameters
Want k is “ideal” distance between vertices

area = width * height
n = vertices.length
k = C * Math.sqrt(area / n)

k is “typical” distance if vertices are spread out
C some constant to be determined

-

-

- - -

Computing Forces I
v at point (v.x, v.y)
u at point (u.x, u.y)

What is distance from v to u?

(u.x, x,y)

--- n.y-V.Y

x
U.X-V.X

dist: * (u.y-v.y

Computing Forces I
v at point (v.x, v.y)
u at point (u.x, u.y)

What is distance from v to u?

deltaX = v.x - u.x
deltaY = v.y - u.y
delta = Math.sqrt(deltaX * deltaX + deltaY *
deltaY)

-

-

-

Computing Forces II
Want (repsulive) force in direction of (deltaX, deltaY)
with given amount (length): repulsiveForce(delta, k)

How to get this? Quitrect, from
W u to vi
⑧
T

repulsive */ ~ (tax, theenFurce(-)

· forne
U has this length

Computing Forces II
Want (repsulive) force in direction of (deltaX, deltaY)
with given amount (length): repulsiveForce(delta, k)

How to get this?

dx = (deltaX / delta) * repulsiveForce(delta, k)
dy = (deltaY / delta) * repulsiveForce(delta, k)

(dx,dy) force applied
to v by n

Adding All Repulsive Contributions
for (let v of vertices) {
 dx[v.id] = 0; dy[v.id] = 0;
 for (let u of vertices) {
 if (v != u) {
 let deltaX = v.x - u.x;
 let deltaY = v.y - u.y;
 let delta = Math.sqrt(deltaX * deltaX + deltaY * deltaY);
 dx[v.id] += (deltaX / delta) * repulsiveForce(delta, k);
 dy[v.id] += (deltaY / delta) * repulsiveForce(delta, k);
}}}

- W
t

/

&

M

1

↓

Similarly For Attractive Forces
for (let e of edges) {
 let v = e.vtx1; let u = e.vtx2;
 let deltaX = v.x - u.x; let deltaY = v.y - u.y;
 let delta = Math.sqrt(deltaX * deltaX + deltaY * deltaY);
 dx[v.id] -= (deltaX / delta) * attractiveForce(delta, k);
 dy[v.id] -= (deltaY / delta) * attractiveForce(delta, k);
 dx[u.id] += (deltaX / delta) * attractiveForce(delta, k);
 dy[u.id] += (deltaY / delta) * attractiveForce(delta, k);
}

a -

- -

-

[
-

L

Applying Forces
for (let v of vertices) {
 let d = Math.sqrt(dx[v.id] * dx[v.id] + dy[v.id] * dy[v.id]);
 v.x += (dx[v.id] / d) * Math.min(d, temp);
 v.y += (dy[v.id] / d) * Math.min(d, temp);
 v.x = Math.max(v.x, xMin);
 v.x = Math.min(v.x, xMax);
 v.y = Math.max(v.y, yMin);
 v.y = Math.min(v.y, yMax);
}

lentthof totalI netforce

V
un

Finally
Repeat:

update positions
decrease temperature

Stop when temperature is 0 (or some #xed number of
iterations)

1: Random Circular

2: Mäkinen Circular

3: AVSDF Circular

4: Force Directed

Okay
But it is WAY BETTER with animation

Demo: lec16-graph-drawing.zip

