
Lecture 14: Drawing Binary
Trees II

COSC 225: Algorithms and Visualization

Spring, 2023

Outline
1. Knuth Layout
2. Tidy Drawing Layout

Last Time: Greedy Layout

-

-

-

-

-

-

-

Also: Knuth Layout

-

-
-

M
- -

--right
(=Y

rightendant

Aesthetic Principles
Aesthetic Principle 1. Vertices at the same depth should lie
along a horizontal line with deeper nodes lower than
shallower nodes.

Aesthetic Principle 2. The le! child of any node should
appear to the le! of its parent, and a right child should
appear to the right of its parent.

->Knuth all leftdescendants

to leftof parent, and

sim. for sight.

Knuth’s Layout Algorithm
Rows and Columns

rows are de"ned by depth (Aesthetic Principle 1)
columns are “in-order” traversal order

each vertex gets own column
guarantees

le! descendants to the le!
right descenadants to the right

-

Aesthetic
I principle

In-order Traversal

,-⑭IE
2, 22, 45 05

103245

In-order Traversal in Code
this.verticesInOrder = function (from = this.root) {
 let vertices = [];
 if (from.left != null)
 vertices = vertices.concat(this.verticesInOrder(from.left));
 vertices.push(from);
 if (from.right != null)
 vertices = vertices.concat(this.verticesInOrder(from.right));
 return vertices;

Lect 13 code on
tartingwebsite S

-

- vix
L

I
C

-I
E
-Lin -Binary class

all descendants
of "from"
list according

to in-order traversal.

Knuth’s Layout in Code
this.setLayoutKnuth = function () {
 const vertices = this.tree.verticesInOrder();
 const depths = this.tree.depths;
 for (let i = 0; i < vertices.length; i++) {
 let vtx = vertices[i];
 let depth = depths.get(vtx.id);
 /* set vtx location to row depth, column i */
 }
}

t

5--from Monday
a Map

-

-

-

--
-

Result

Demo, Again
lec13-binary-tree.zip

What’s Not to Like?
sometimes too much horizontal

space?

·centering - more balance?

·process graph more quickly?

Result Again

Third Principle
Aesthetic Principle 1. Vertices at the same depth should lie
along a horizontal line with deeper nodes lower than
shallower nodes.

Aesthetic Principle 2. The le! child of any node should
appear to the le! of its parent, and a right child should
appear to the right of its parent.

Aesthetic Principle 3. If a node has two children, it’s -
coordinate should be the midpoint of its childrens’ -
coordinates

x
x

-

I I

How Can We Achieve All Three?

Fundamental change:

process both children first

before parent
Post-order &raversal

A First Attempt
Idea. Place children "rst, then place parent above
midpoint of children.

if one child, must respect Aesthetic Principle 2.

Question. In what order should we place vertices?

-> Postorder

A Problematic Example
Post:left cess, then right, then

self

01 2 3 4
%Q-

I ⑧ 82 =1

4 "Los-2ztfraft provisional-
placement:
as far to left

↓20 I as possible,
while respecting:

1 (1) AP 3 and

(2) vertices invow

A Solution?
suppose children are provisionally placed
place parent:

correct relative to children, or
le!-most availble position at parent’s depth

Then what?

record difference between

actual placement and

desired placement rel to
children

-> then shift all

descendants

Tidy Drawings of Graphs
Wetherell and Shannon, 1979

Phase 1. Get initial placement

process vertices in post-order
place each vertex according to maximum of

child-aware placement & "rst available column
keep track of o!set if placed vertex to right of child-
aware placement

Phase 2. Finalize placement

process vertices in pre-order
place vertex at current position + sum of ancestors’
o#sets

-

-

Tidy Drawing Example

0 1 2 3 4-1

0

1

2

3

5

0

1 2

3 4

5

6

5
I

4
2

is

0 1 2 3 4-1

0

1

2

3

5

0

1 2

3 4

5

1

0 1 2 3 4-1

0

1

2

3

5

0

1 2

3 4

5

1

3

0 1 2 3 4-1

0

1

2

3

5

0

1 2

3 4

5

1

3

5

0 1 2 3 4-1

0

1

2

3

5

0

1 2

3 4

5

1

3

5

44 3

- offset=3
-

L
- 8

0 1 2 3 4-1

0

1

2

3

5

0

1 2

3 4

5

1

3

5

4 3

2 2 1

0 1 2 3 4-1

0

1

2

3

5

0

1 2

3 4

5

1

3

5

4 3

2 1

0

0 1 2 3 4-1

0

1

2

3

5

0

1 2

3 4

5

1

3

5

4 3

2 1

0

0 1 2 3 4-1

0

1

2

3

5

0

1 2

3 4

5

1

3

5

4 3

2 1

0

0 1 2 3 4-1

0

1

2

3

5

0

1 2

3 4

5

1

3

5

4 3

2 1

0

0 1 2 3 4-1

0

1

2

3

5

0

1 2

3 4

5

1

3

5

4 3

2 1

0

⑧

0 1 2 3 4-1

0

1

2

3

5

0

1 2

3 4

5

1

3

5

4 3

2

3

1

0

1

0 1 2 3 4-1

0

1

2

3

5

0

1 2

3 4

5

1

4

5

4 4

2

3 1

1

0

0 1 2 3 4-1

0

1

2

3

5

0

1 2

3 4

5

1

5

4 4

2

3 1

45

1

0

0 1 2 3 4-1

0

1

2

3

5

0

1 2

3 4

5

1

4

2

3

5

0

Phase One Setup
Setup:

get vertices in post-order
store next available column at each depth, col
a Map pos for each (horizontal) position
a Map offest for each horizontal o#set

sim.
c to greedy

E pos.

kay =

-

VHx ic,
-

val =col.

Post-order Iteration over v
Child aware position, curPos:

if leaf, set to next available column at v’s depth
if only le! child, v is col to right of child
if only right child, v is col to le! of child
if two children, v’s col is midpoint of children

If not leaf, update offset of v to

max of next availble col, curPos
Set v’s position to curPos + offset (if non-leaf)

update col at v’s depth to be v’s position + 2amake
- room

for a
parent

Phase 2
Pre-order Iteration over v

Set "nal position of v to

row = v’s depth
col = v’s provisional position + sum of ancestor’s o#sets

Tidy Drawing Demo

Homework 08
Implement the Tidy Drawing procedure yourself!

Input:

A BinaryTree
Output:

The row/column of each vertex according to Tidy Tree
procedure

