Lecture 13: Drawing Binary
Irees |

COSC 225: Algorithms and Visualization
Spring, 2023

4R W exlomsan
Annoucements 5 Kea

. . M
o Assignment 06 due tonight
e Assignment O7 posted soon ~

= make a site that incorporates recursion and
coordinate transformation to make a self-similar
image
= due next Monday
e Quiz this Wednesday: coordinate transformations

= define a matrix transformation given
transforfmation’s geometric description

= given a matrix and original image, draw the
transformed image

Outline

Binary Trees

Activity: Drawing Binary Trees by Hand
. Aesthetic and Pragmatic Principles
Greedy Procedure

Knuth Layout

Cvx W N

A While Back

We illustrated the depth-first search algorithm on graphs

A While Back

We illustrated the depth-first search algorithm on graphs

Interaction
User drew input graph graph by hand

e from clicks, obtained graph structure
e geometry of graph layout defined with graph

Graph Drawing

Input. A graph

e vertices

e edges

Output. A drawing of the graph

e visual representation of vertices
» geometric locations
» usually “points”
e visual representation of edges
» usual lines or curves between vertices

This Week

Algorithms for drawing binary trees

Recall

A (rooted) binary tree consists of

e aset V of vertices

e a root vertex
e each vertex has:
= a left child (possibly null)
= a right child (possibly null)

satisfying:
e the root is not anyone’s child

e every node is the child of exactty one node
e every node is a descendant of the root

Example Jo RS>

V={o, 1,2 3, 47
root = 0 -

left(0) =_2, right(0)
left(3) = 4, right(3) =_1
unassigned children are null

>
1

Activity: Draw a Tree

v=4{0,...,13}

root: 0

left(0) = 1, right(0)
left(1l) = 3, right(1l)
right(2) = 5

left(4) = 6, right(4)
right(5) =

left (8)

left(9) = 10, right(9)
left(10) = 12, right(10)

You Drew This, Right?

How About This?

What Did You Draw?

. Roat @ top
el cmldgen % Z

qo bt ®/ O,
_ “C(\,\L VRN . :

q0 {'\C‘\/\JV
dg (Fockar Soon {oof)

S Sown wol &

Questions

. What information do we want to convey about the tree?’
. What constraints might we have on our drawing?

. What aesthetic considerations might we have?

 when does a tree “look nice?”

O DN —

What Information Should the Drawing
Convey?

_ Pocenk cuild felafiashie,

- WQ/V\QS CdoOdQ/ C.\'\((é‘em
Mdow

- d\SQ\V\C‘uiS\'\ IQK(’/“C(L((' c\k;(d!u/\
owude Moo \lis.(\ou

What Constraints Should we Consider?
- Q(,u'\?c({ has —Qxeé l’lec‘c{(/\{-
Widn
— W\ WU Sk / SQ,QQ_,(cA-ZM\
bolwaum Vel Keas

o %Q_ e,\r\ouk?(/\

CU\NDMAUA
Aesthetic Considerations? QALY

— \ga&a.mcy_,/ S‘j VV\M(-C&/%

cf\c)
0/

/ e_uen \7: SPZLL(’.A

. G¢\A \QYM{‘ \le\(‘('I(,QX

First Principle

Aesthetic Principle 1. Vertices at the same depth should lie
along a horizontal line with deeper nodes lower than
shallower nodes.

e what phyvsical requirements does this impose?
pny q P

- - em— —

A
A

~~O~

\—\uq‘/\" QD é&avu\\l\
\lnwogly 68 Cup

Physical Limitation

Have to contend with width

e What can we do about it?

_ scyollin } ')

Pord Glhon hottzonh Spuc
\J\'(JOO'(’ @ (M LQ(?

—

Optimal Layout?
How can we achieve minimum possible width subject to

1. lower bound on horizontal spacing
2. Aesthetic Principle 1

©

°
J aEEE—
- a—
- o o — —
- -~ %‘
e

Greedy Layout

Idea

e draw vertices in rows according to depth
» depth = distance from root

e root goes alone in the top row, next row at depth 1, etc.

e draw each row with vertices from “left to right”
» what does this mean?

C > ey cwid oo/ S
o [efd o right
C\/\\\(‘,\

Greedy Layout

Idea

e draw vertices in rows according to depth

» depth = distance from root
e root goes alone in the top row, next row at depth 1, etc.
e draw each row with vertices from “left to right”

» what does this mean?

Promise

e Use as few columns as possible!
» minimize width requirement

Greedy Layout Illustrated

left(0) = 1, right(0) = 2
left(l) = 3, right(l) = 4

pronerr—s— ol k(L) = §

left(4) = 6, right(4) = 7

How to Implement Greedy Layout?

Input: tree (just the root?)
P) vectex

Output: row and column for each no

i Compale
L = ch’)—M/\ & %\(’;"l

VN ool neke « depth

CD how Moy Jo
ekt o8 cadN visted?

How to Get Depths of Nodes?
Leauiige Lo wnaSe Yo W(W\Iv

— wwnbivae o CQQ!‘V,
COan b how QQx('

ek oot dqb*« O
qo to Unldien (F owy)
\/&Pda!\‘ﬁ J(\'\-‘L.((ch(/\ \7)
| P&&Uf\'\’ &WH\

l

’

How to Get Depths of Nodes?

My implementation:

e set depth when each vertex is added
e depth of a vertex is parent’s depth + 1
e store a Map:

= keys are vertex IDs

= values are depths

How to Get Columns?
Coc cadn opt & leeap
Snf acl OQ \L'C £ - Wost W~ oceufeed
Lo TR

T Conuefs2_ 'K’\'\L e
— W Visiag O Wedx Vextex
Pu\\— VoCkex @ et .\momL
AW QQLuP{eci bl ok S

d&_@%, T et co\ A'
for Fot depth

How to Get Columns?

Observation. If u is a left child of v and w is a right child of
v, then u should be in a column to the left of v.

Idea. Starting from the root:

1. place vertex in the left-most un-assigned column in its
row (depth)

2. place left descendants

3. place right descendants

This is pre-order traversal!

Column Assignment Illustrated

left(0) 1, right(0) = 2

left(l) = 3, right(l) = 4
right(2) = 5
left(4) = 6, right(4) = 7

Greedy Layout in JavaScript
Computing Depths:

BinaryTree = (root) { d(\A“Q %A*
.depths = Map();
S c,-) C{(vbS

this.addLeftChild = (parentID, childID) { l ‘é\

this.depths.set(childID, .depths.get(parentID) + 1);

Greedy Layout in JavaScript

Getting vertices in “pre-order”

.verticesPreOrder (from = this.root) {

vert\iI:Z:J.-;j:h? .[_]i) ; \QX’X' Cg‘LsQUl\C&W\('S

(.left I=)
r .
e vertices = vertlces.concat(z .verticesPreOrder (.lef&));

T =

(.right !=)
vertices = vertices.concat .verticesPreOrder (

vertices;

Greedy Layout in JavaScript

Getting Rows and Columns

.setLayoutGreedy = () {
. vertices = .tree.verticesPreOrder();

’ depths = .tree.depths;

e const cols

cd 08T Tebt ~wagof

for (vtx vertices) { A\ OCLM?\‘QCB LO{U\W

row = depths.get(vtx.id) ° oA - C\’Q’P '\’\A C&

col = cols[row]; *

cols[row]++;

+}

Demo

e lecl3-binary-tree.zip

What is Missing? [os ViSual ©¢p

/ c{c[(d—

Second Principle

Aesthetic Principle 2. The left child of any node should
appear to the left of its parent, and a right child should
appear to the right of its parent.

How to Achieve Principles 1 and 2?

Ok‘((ox\A(y; Qo(uwmf N7,
’\’\‘\CA.% o lQ'CJT' -Mog} = \!MS—Q)C
(e tn Host 60()

N

Knuth’s Layout Algorithm

Rows and Columns

e rows are defined by depth (Aesthetic Principle 1)
e columns are “in-order” traversal order

= each vertex gets own column
e guarantees B

» left descendants to the left

» right descenadants to the right

In-order Traversal

In-order Traversal in Code

.verticesInOrder = (from = this.root) {
vertices = [];
(.left I=)

vertices = vertices.concat(.verticesPreOrder (.left));

vertices.push() ;
(.right !=)

vertices = vertices.concat(.verticesPreOrder (.right))

vertices;

Knuth’s Layout in Code

.setLayoutKnuth = () {

vertices = .tree.verticesInOrder();
depths = .tree.depths;

i = 0; i < vertices.length; i++) {

vtx = vertices[i];

depth = depths.get(vtx.id);

Result

Demo, Again

e lecl3-binary-tree.zip

What’s Not to Like?

Result Again

Third Principle

Aesthetic Principle 3. If a node has two children, it’s x-
coordinate should be the midpoint of its childrens’ x-
coordinates

Questions (Next Time)

1. How can we satisfy all three aesthetic principles?

2. How can all be satished while also minimizing the width
of the drawing?

3. What tradeoffs are we forced to make balancinng these
principles?

