
Lecture 13: Drawing Binary
Trees I

COSC 225: Algorithms and Visualization

Spring, 2023

Annoucements
Assignment 06 due tonight
Assignment 07 posted soon

make a site that incorporates recursion and
coordinate transformation to make a self-similar
image
due next Monday

Quiz this Wednesday: coordinate transformations
de!ne a matrix transformation given
transformation’s geometric description
given a matrix and original image, draw the
transformed image

48 he extension

is fine
z

-

-

-

-

Outline
1. Binary Trees
2. Activity: Drawing Binary Trees by Hand
3. Aesthetic and Pragmatic Principles
4. Greedy Procedure
5. Knuth Layout

A While Back
We illustrated the depth-!rst search algorithm on graphs

A While Back
We illustrated the depth-!rst search algorithm on graphs

Interaction
User drew input graph graph by hand

from clicks, obtained graph structure
geometry of graph layout de!ned with graph

Graph Drawing
Input. A graph

vertices
edges

Output. A drawing of the graph

visual representation of vertices
geometric locations
usually “points”

visual representation of edges
usual lines or curves between vertices

This Week
Algorithms for drawing binary trees

Recall
A (rooted) binary tree consists of

a set of vertices
a root vertex
each vertex has:

a le! child (possibly null)
a right child (possibly null)

satisfying:

the root is not anyone’s child
every node is the child of exaclty one node
every node is a descendant of the root

V

- 1

Example
V = {0, 1, 2, 3, 4}
root = 0
left(0) = 2, right(0) = 3
left(3) = 4, right(3) = 1
unassigned children are null

vertis
-

I

- -

- -

Activity: Draw a Tree
V = {0,...,13}
root: 0
left(0) = 1, right(0) = 2
left(1) = 3, right(1) = 4
right(2) = 5
left(4) = 6, right(4) = 7
right(5) = 8
left(8) = 9
left(9) = 10, right(9) = 11
left(10) = 12, right(10) = 13

You Drew This, Right?

How About This?

What Did You Draw?
·Roof& top ⑧

①'·left children ②
-I 2

90 left ③ ④ ⑤

· right children:i !
90 right

cleep (further from roof)
is downward

Questions
1. What information do we want to convey about the tree?
2. What constraints might we have on our drawing?
3. What aesthetic considerations might we have?

when does a tree “look nice?”

What Information Should the Drawing
Convey?
- pchild relationship

- parants above/children
below

- no overlap of same level
-
-

- vertical position a depth

- distinguish left/right
children

-
whole tree visible

What Constraints Should we Consider?
- viewport has fixed height

Width

- minimum size/separation
between vertices

Aesthetic Considerations?

large enough
components
to convey
data

- balance/symmetry

spaces

First Principle
Aesthetic Principle 1. Vertices at the same depth should lie
along a horizontal line with deeper nodes lower than
shallower nodes.

what physical requirements does this impose?

.....,--- depth o

⑧ depth 1........

/ W
---------depth 2

Heightofdrawing now depends

linearly on depthof tree

Physical Limitation
Have to contend with width

What can we do about it?

- scrolling?
-partition horizontal space

w/ roof a center?

Optimal Layout?
How can we achieve minimum possible width subject to

1. lower bound on horizontal spacing
2. Aesthetic Principle 1

.. -----
12

...- *---
&

S

I

Greedy Layout
Idea

draw vertices in rows according to depth
depth = distance from root

root goes alone in the top row, next row at depth 1, etc.
draw each row with vertices from “le" to right”

what does this mean?
e

↳ left child always
to leftof right
child

Greedy Layout
Idea

draw vertices in rows according to depth
depth = distance from root

root goes alone in the top row, next row at depth 1, etc.
draw each row with vertices from “le" to right”

what does this mean?

Promise

Use as few columns as possible!
minimize width requirement

Greedy Layout Illustrated
V = {0,...,7}
root: 0
left(0) = 1, right(0) = 2
left(1) = 3, right(1) = 4
right(2) = 5
left(4) = 6, right(4) = 7

--

->leff(2):5

⑧⑧ 11
in ①
① R Nix
12 ⑮③ "
-1 ⑦8
⑥

How to Implement Greedy Layout?
Input: tree (just the root?)

Output: row and column for each node
vertex
-
I

=depth I computethis !

-max # of nodes a depth

↳> howmany to

leftof each vertax?

How to Get Depths of Nodes?

traverse from nod to parent
-> continue to roof,

counthow far
-

set roofdeptho

I go tochildren (if any)

update their depth
to

-

It parentdepth

How to Get Depths of Nodes?
My implementation:

set depth when each vertex is added
depth of a vertex is parent’s depth + 1
store a Map:

keys are vertex IDs
values are depths

-

How to Get Columns?
For each depth di keep
track of left-most un-occupied
column

Traverse the tree

- when visiting a ·de vertex
putverfux & left most
un occupied all at its

depth, incrementcol #

for thatdepth

How to Get Columns?
Observation. If is a le" child of and is a right child of
, then should be in a column to the le" of .

Idea. Starting from the root:

1. place vertex in the le"-most un-assigned column in its
row (depth)

2. place le! descendants
3. place right descendants

This is pre-order traversal!

u v w
v u v

O
/ W
O ⑧ba0o ToO

Column Assignment Illustrated
V = {0,...,7}
root: 0
left(0) = 1, right(0) = 2
left(1) = 3, right(1) = 4
right(2) = 5
left(4) = 6, right(4) = 7

Greedy Layout in JavaScript
Computing Depths:

const BinaryTree = function (root) {
 this.depths = new Map();
 ...
 this.addLeftChild = function (parentID, childID) {
 ...
 this.depths.set(childID, this.depths.get(parentID) + 1);
 }
}

-- depthsgetsidethete
w) ic

Greedy Layout in JavaScript
Getting vertices in “pre-order”

this.verticesPreOrder = function (from = this.root) {
 let vertices = [];
 vertices.push(from);
 if (from.left != null)
 vertices = vertices.concat(this.verticesPreOrder(from.left));
 if (from.right != null)
 vertices = vertices.concat(this.verticesPreOrder(from.right));
 return vertices;

a leftdescendants
-I=---

rightdescendants

Greedy Layout in JavaScript
Getting Rows and Columns

this.setLayoutGreedy = function () {
 const vertices = this.tree.verticesPreOrder();
 const depths = this.tree.depths;
 ...
 const cols = []; // current col for each row, initialized to 0
 ...
 for (let vtx of vertices) {
 let row = depths.get(vtx.id)
 let col = cols[row];
 cols[row]++;
 /* set position of vtx to this row and col */
 }}

↑

I

-

(a[d] left-most
unoccupied column
·

atdeptu c
↑

/

↑

Demo
lec13-binary-tree.zip

What is Missing? lose visual rep

ofleft/right
child

Second Principle
Aesthetic Principle 2. The le" child of any node should
appear to the le" of its parent, and a right child should
appear to the right of its parent.

How to Achieve Principles 1 and 2?

arrange columns so

that "left-most" vertex

is in firstcol,..

Knuth’s Layout Algorithm
Rows and Columns

rows are de!ned by depth (Aesthetic Principle 1)
columns are “in-order” traversal order

each vertex gets own column
guarantees

le" descendants to the le"
right descenadants to the right

-

In-order Traversal

In-order Traversal in Code
this.verticesInOrder = function (from = this.root) {
 let vertices = [];
 if (from.left != null)
 vertices = vertices.concat(this.verticesPreOrder(from.left));
 vertices.push(from);
 if (from.right != null)
 vertices = vertices.concat(this.verticesPreOrder(from.right));
 return vertices;

Knuth’s Layout in Code
this.setLayoutKnuth = function () {
 const vertices = this.tree.verticesInOrder();
 const depths = this.tree.depths;
 for (let i = 0; i < vertices.length; i++) {
 let vtx = vertices[i];
 let depth = depths.get(vtx.id);
 /* set vtx location to row depth, column i */
 }
}

Result

Demo, Again
lec13-binary-tree.zip

What’s Not to Like?

Result Again

Third Principle
Aesthetic Principle 3. If a node has two children, it’s -
coordinate should be the midpoint of its childrens’ -
coordinates

x
x

Questions (Next Time)
1. How can we satisfy all three aesthetic principles?
2. How can all be satis!ed while also minimizing the width

of the drawing?
3. What tradeo#s are we forced to make balancinng these

principles?

