Lecture 12: Coordinate Transformations, Recursion \& Self-similarity II
COSC 225: Algorithms and Visualization Spring, 2023

Annoucements

Assignment 06 Due Friday MONDAY!!!

- tester later this week

Outline

1. Koch Curve
2. SVG Groups, Transformations, and Composition
3. Matrix Transformation Activity
4. Tree Example

Motivation: Self-Similarity

Example: Koch Curve I

How did we make the snowflake fractal?

Step 1: define a basic shape

Example: Koch Curve II

How did we make the snowflake fractal?

Step 2: define sub-shapes for basic shape

Example: Koch Curve III

How did we make the snowflake fractal?

Step 3: recurse

Example: Koch Curve IV

How did we make the snowflake fractal?

Step 3: recurse

Observation

Each iteration draws a bunch of transformed copies of the original shape

Activity

Draw two iterations of the Koch curve!

- lec11-koch-step.zip

In koch.js:

- drawSegment ($x 1, y 1, x 2, y 2$) will draw the the basic shape transformed start at ($\mathrm{x} 1, \mathrm{y} 1$) and end at (x 2 , y2)
- in original, (x1, y1, x2, y2) = (0, 100, 600, 100),

How to Add First Iteration?

Find coordinates of endpts of sub-segments, t draw.

$$
\ddot{i}^{\prime}
$$

The Second Iteration?

This Would Be Annoying!

Composition

From last time: transformations compose

- perform transformation 1 , then transformation 2
- transformation 2 is performed relative to transformation 1

Transformed

translate origin (2,3 rotate 30° rotate
Scale (0.5)

Transformed Coordinates

Element in New Coordinates

New New Coordinates

Koch Revisited

To draw a Koch segment:

1. Change to local coordinates for that segment
2. Draw a Koch segment

- relative to local coordinates instructions are the same as original segment

3. Recursively draw a Koch segment on each sub-segment

Koch with Coordinates

The <g> Element

In SVG, $<g>$ is a group element

- all elements in the same <g> are drawn together
- transformations of $<g>$ are applied to all elements in the <g>
- <g> elements can be nested
- transformations of nested elements are composed

Example

Oriq coords

Drawing Koch Recursively
 coors rel to parent
 DrawKoch (parentGroup, transformation!:

 create and transform curGroup for this segment draw this segment to curGroup

1 DrawKoch(curGroup, transformation for first sub-segment) DrawKoch(curGroup, transformation for second sub-segment)
DrawKoch(curGroup, transformation for third sub-segment)
DrawKoch(curGroup, transformation for fourth sub-segment)

Koch Demo

- lec12-koch-step.zip

The matrix Reloaded

 In SVG you can perform an affine transformation- vector $(1,0)$ to (a, b)
- vector $(0,1)$ to (c, d)
- point $(0,0)$ to (e, f) with

$$
\begin{aligned}
& \left(\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right) \quad\left(\begin{array}{c}
\text { scales } \\
\text { by }
\end{array}\right. \\
& \text { rotation } \\
& \text { by } \theta
\end{aligned}
$$

For Your Consideration
displacement:

Matrix transformat to transform outer square to inner

Activity: Find the matrix

Question. What matrix transformation will transform the outer square to the inner square?

How Did I Make This?

Recursive Squares Demo

- lec12-recusrive-squares.zip

How Did I Make the Tree?

To Identify
 1. Basic Shape

2. Recursive Step: transformation(s)?

Recursive Tree Demo

- lec12-recursive-tree.zip

Whoa, Dude

- lec12-animated-tree.zip

Assignment 07

Make a website that incorporates (recursive) self-similar graphics

- must change some attribute by recursion depth

Next Week

Automated Graph Drawing!

- Given (only) sets of vertices and edges of a graph, how can we draw it so that it looks nice?

