Lecture 11: Coordinate

 Transformations, Recursion \& Self-similarity ICOSC 225: Algorithms and Visualization Spring, 2023

Annoucements

Assignment 06 Due Friday MONDAY!!!

- tester later this week

Outline

1. Coordinates
2. Coordinate Transformations
3. Koch Curve Activity
4. SVG Groups and Coordinates

Motivation: Self-Similarity

Koch Snowflale

Goal

Generate self-similar graphical content
Homework 07: draw self-similar images

Coordinates

Cartessian Coordinates:

- associate each point in the plane with a pair of numbers: $A=(x, y)$

Screen vs Standard Coordinates

Screen coordinates:

- origin is upper left corner
- x increases in right direction
- y increases in downward direction

Standard coordinates:

- origin is somewhere
- depends on region we want to depict
- x in right direction
- y increases in upward direction

Today: use standard coordinates!

Points and Vectors

- a point is a location in the plane
- specified by a pair of numbers: coordinates,
- a vectors is a displacement between points
- magnitude + direction
- arrows

- specified by a pair of numbers: components

Points and Vectors, Illustrated

$$
\begin{aligned}
& B=(1,4) \\
& (1-4,4-2)=(-3,2) \\
& A=24,2)
\end{aligned}
$$

Vector Operations

Vectors can be manipulated with algebraic operations:

1. vector addition:
-(u1), (22) $+\left(v_{1},\left(v_{2}\right)=\left(u_{1}+v_{1}\right),\left(u_{2}+v_{2}\right)\right.$
2. scalar multiplication:

- $c\left(u_{1}, u_{2}\right)=\left(c u_{1}, c u_{2}\right)$

Coordinates cancalarf interpreted as vectors:

- associate the point $A=(x, y)$ with the vector (x, y)

Vector Operations Illustrated
Addition \sim translation $=(9,3)$ S. multiplication m scaling

Basic Coordinate Transformations

SVG supports transformation of elements (shapes, groups, etc)

- translate(tx, ty): take each vector (a, b) and move it to $\left(a+t_{x}, b+t_{y}\right)$
- scale (s): take each vector (a, b) and move it to ($s \cdot a, s \cdot b$)
- rotation (d): rotate each vector by d degrees in the counter clockwise direction around the origin
For example:

Translation

Scale

Rotation

Composing Transformations

Transformations can be composed:

- perform one transformation, then another, ...
- transformations are applied
- in order "left to right"
- relative to previously transformations

Translation then Rotation

Rotation then Translation

Demo

- lec11-coordinate-transformations.zip
translate(-20, 10) scale(2)?

			$1 \cdot$	-	20						

scale(2) translate(-20, 10)?

More Generally

A broad class of transformations are defined by:

1. how they transform the first standard basis vector $e_{1}=(1,0)$
2. how they transform the second standard basis vector $e_{2}=(0,1)$
3. how they transform the origin $(0,0)$

Affine Transformations

Suppose a transformation maps:

- vector (1,0) to (a,b)
- vector (0,1) to (c,d)
- point $(0,0)$ to (e, f)

To apply transformation to (x, y) :

1. write $(x, y)=x(1,0)+y(0,1)$
2. apply transformation to (1,0) and (0,1)
3. get resulting value: $\underline{x} \underline{(a, b)}+\underline{y}(\underline{c, d)}=(\underline{a x+c y, b x+d y)}$
4. add (e, f) to result:
$\{\overline{a x+c y+e, b x+d y+f}\} \leftharpoonup\rangle$
This is an affine transformation

matrix Transformations

In SVG you can perform an affine transformation

- vector $(1,0)$ to (a, b)
- vector $(0,1)$ to (c, d)
- point $(0,0)$ to (e, f)
with

matrix transforms include all scale, translate, rotate transforms, and more!

Questions

1. What is the matrix equivalent of translate $(20,30)$?

$$
\text { matrix }(\mathbb{Q}, 0,0,01,20,30)
$$

2. What is the matrix equivalent of scale (2)?

$$
\operatorname{matsix}\left(20-2-\frac{0}{2}-1\right)
$$

3. What is the matrix equivalent of rotate (90)?

$$
\operatorname{matsix}\left(\begin{array}{c}
0 \\
\cos \theta \\
\sin \theta-\sin \theta \\
\cos \theta
\end{array}\right)
$$

Question

$$
\operatorname{matrix}(-1 \quad 1-20,54030)
$$ What is the matrix of this transformation?

Self-Similarity via Transformations

Example: Koch Curve I

How did we make the snowflake fractal?

Step 1: define a basic shape

Example: Koch Curve II

How did we make the snowflake fractal?

Step 2: define sub-shapes for basic shape

Example: Koch Curve III

How did we make the snowflake fractal?

Step 3: recurse

Example: Koch Curve IV

How did we make the snowflake fractal?

Step 3: recurse

Observation

Each iteration draws a bunch of transformed copies of the original shape

Repetition and Transformation in SVG

1. Define the basic shape in a <defs> element

2. Draw basic shape with <use>, apply transform to transform the element

Now can re-use my-rect over and over again with different transformations

- of course, this can (should?) all be done with JavaScript

Activity

Draw two iterations of the Koch curve!

- lec11-koch-step.zip

Next Time

Make things easier!

- compose transformations by nesting group (<g>) elements
- program drawing recursively

