
Lecture 08: Objects, Graphs, and DFS

COSC 225: Algorithms and Visualization

Spring, 2023

Annoucements

1. No new assignment next week

clean up and resubmit old assignments

2. Assignment 05 due date 03/06

3. Assignment 06 due 03/24 (a!er break!)

pair assignment!

posted next week

Outline

1. Graphs and DFS

2. Objects and Visualization

3. DFS Demo

4. Convex Hulls 5 topic for asset06.

Last Time

JavaScript Events

event listeners

responding to events

Intro to JavaScript Objects

constructors, "elds, methods

Graphs

vertices and edges

associates clicks, etc.

to DOM objects that-
are interacted wi

-

Today

More graph visualization!

better Graph, GraphVisualizer
Visualizing algorithms!

depth-"rst search

A geometric problem!

convex hulls

Graphs

Graphs

Mathematical abstraction of networks

set of vertices a.k.a. nodes

set of edges

each edge is a pair of nodes

If , we say and are neighbors

V
E

e ∈ E
(u, v) ∈ E u v

I

↳↳-I B

↓-

Representing Graphs

Adjacency list representation

list (e.g., array) of vertices

for each vertex, store a list of its neighbors

Example

1: 2, 3, 4
2: 1, 4
3: 1, 5
4: 2, 5
5: 3, 4

V = {1, 2, 3, 4, 5}
E = {(1, 2), (1, 3), (1, 4), (2, 4), (3, 5), (4, 5)}

en

/

⑪

·

Representing a Graph with Objects

Structure

Graph
stores sets of vertices, edges

Vertex
stores ID, list of neighbors

Edge
stores pair of endpoints

JavaScript
-

-
-

-
-

-

Graph in JavaScript

function Graph(id) {
 this.id = id; // (unique) ID of this graph
 this.vertices = []; // set of vertices in this
graph
 this.edges = []; // set of edges in this
graph
 this.nextVertexID = 0; // ID to be assigned to next
vtx
 this.nextEdgeID = 0; // ID to be assigned to next
edge
 ...
}

constructorname

-- argument
-H -empty array
-

-

-

-

Notes on JavaScript Arrays

no speci"ed datatypes

self resizing

support stack operations

push(elt) appends elt to end

pop() removes and returns last element

associative arrays indices need not be numbers!

const a = []; // make an array
a.push(1);
a.push(2);
a["name"] = "Alice";
let guess = a.pop(); // what does this do?

-

-

-

Graph Interactions

add (remove?) vertices

add (remove?) edges

Create/Add Vertices

 this.createVertex = function (x, y) {
const vtx = new Vertex(this.nextVertexID, this,

x, y);
this.nextVertexID++;
return vtx;

 }

 this.addVertex = function(vtx) {
if (!this.vertices.includes(vtx)) {
 this.vertices.push(vtx);
 console.log("added vertex with id " +

vtx.id);
} else {
 console.log("vertex with id " + vtx.id + "

not added because it is already a vertex in the graph.");
}

 }

arguments
↳ leg g =

E new GraphGre -- -

--=

- [>
-

I

- -

->-
-

-

->

3

Building Graphs Interactively

GraphVisualizer object

function GraphVisualizer (graph, svg, text) {
 this.graph = graph; // the graph we are
visualizing
 this.svg = svg; // the svg element we are
drawing on
 this.text = text; // a text box

 ...
}

-

GraphVisualizer’s Role

Graph speci"es structure
GraphVisualizer mediates interactions between user and
Graph
visualization/display

interaction

Encapsulation:

Graph does not reference any display attributes

GraphVisualizer handles all

display (e.g., DOM elements)

interactions (e.g. clicks)

styling

-

-

GraphVisualizer behaviors

1. Respond to clicks

click to empty space adds a vertex

create/style DOM element, add to SVG image

create a Vertex and add to Graph
click to "rst vertex

highlights vertex

click to next vertex

adds Edge between Vertexs in Graph
draws line between corresponding vertices

2. Other visual modi"cations

highlight/mute vertices/edges

-

--

Graph Builder Demo

Future Work

“import” an existing graph

automated graph drawing

given just vertices/edges of a graph, determine how
graph should be displayed

this is a major challenge!

Graph Search

Input

Graph (adjacency list representation)

starting Vertex v
Output

Set of vertices reachable from v
Question How to do this?

mey/*track

O
f

*
O

jawho's *I
Visited

P 678

Depth-"rst Strategy

1. Start at starting vertex

2. Until stuck at starting vertex:

look for an unvisited neighbor

if found, move to unvisited neighbor

otherwise backtrack to vertex w/ unvisited neighbor#
O

-

a
O·-R

X-- 08

Implementing DFS

What do we need to keep track of throughout execution?

-Innoces:let
- See neighbors
-

- of"active"
vertices ↓

non-exhausted

DFS Pseudo-code

visited = [start]; // set
active = [start]; // stack

while active is not empty
 cur = top of active
 if cur has unvisited neighbor v
 push v to active
 add v to visited
 else
 pop cur off active

-

E backtrack

Visualizing DFS

What should we show user? How to illustrate behavior?

-color coding vertices

by active/visited/aur/
unvisited

-> addtext
rep too

- step button
- each our te

- arrows
-

Implementing DFS in JavaScript

1. De"ne a Dfs object type

what should it store?

2. Implement DFS procedure as steps

start procedure

individual actions to be visualized

Question. What should count as a single step?

DFS Demo

Design Notes

Dfs stores

Graph to explore

GraphVisualizer to update

local info for algorithm execution

Dfs tells GraphVisualizer what to highlight/mute, etc

GraphVisualizer decides how to update display in
response

Lab 06

Algorithm Visualization: Convex Hulls

Convex Hull Problem

Input:

set of points in plane

-coordinates of each point

Output:

a sequence of points that de"ne
the “boundary” of the set of points

path around surrounds all
points

the bounded region is convex

(x, y)

(,), (,), … , (,)x1 y1 x2 y2 xk yk

(,), (,), … , (,)x1 y1 x2 y2 xk yk

Which Points are on the convex hull?

Next Week

Algorithms for "nding the convex hull!
Your Task (Assignment 06):

implement a convex hull algorithm

create an interactive visualization for the algorithm

