
Lecture 05: Cellular
Automata & Interactions

COSC 225: Algorithms and Visualization

Spring, 2023

Outline
1. Cellular Automata
2. Activity: Rule 90
3. JavaScript and Node.js
4. CSS Animations
5. JS Events

-

-

&

Last Time: JavaScript
<!doctype html>
<html lang=en>
 <head>
 <meta charset=utf-8>
 <title>Page Title</title>
 <script src="hello.js"></script>
 <script>

 ...javascript code here...
 </script>
 </head>
</html>

I-

Basic Tasks
Get an element in the document (selector is like CSS
selector)

!rst element in document matching selector is returned

Create an element (some-tag is desired tag of element)

Add text to element

Add element as child of another

 const someElement document.querySelector("selector");

 let myElement = document.createElement("some-tag");

 myElement.textContent = "some text";

 someElement.appendChild(myElement);

-

e

-

-

Adding Style
If someElement is an element, we can…

set an id

add a class

add a style

 someElement.id = "some-id";

 someElement.classList.add("some-class");

 someElement.style.backgroundColor = "rgb(200,200,200)";

This Week
Cellular Automata

use JavaScript to make generative graphics
en

Cellular Automata (1D, 2 State)
A cellular automaton consists of

a (circular) array of cells
cells have 2 neighbors

cells can be in one of two states: 0 or 1
a con!guration assigns states to each cell

x
1dimensional

trightE
--

periodic boundary
5 black

Liter

Updating Rule
In a single step, each cell updates its state based on

its current state
state of neighboring nodes

Space-time diagram shows evolution over time

each row is a con!guration

Example
Update rule: update to 1 if either neighbor was 1, update
to 0 otherwise

D
Initial config.

3 I-
*

All Possible Rules
Updated state depends on 3 states:

le" neighbor’s state
own state
right neighbor’s state

There are possibilities that must be considered

A rule determines update state for each possibility

8 = 23

0

-

-

-o
- I

-

- ⑧
-

-

W I

E

currentstate
↑
->i14s "De

Example: updateto 1 if either I
middle

is 1 cell's new
State

Naming Convention
Associate each value with a bit in binary representation

28 =256

↳it values
W -O 0 W W

Y ". . " Is, 1994,
r

P

YYYebipart
128 +64 +32 +16 +8+0+2+0
-

=250 -> Rule 250L
Convention:Wolfram "ANew Kind

I

of Science

Simulating CA by Hand (or JavaScript)
Input:

rule (a number from 0 to 255)
con!guration (array of 0s and 1s)

Output:

updated con!guration

To draw space-time diagram:

do this repeatedly

I
-

- array
same size

fig -as inputcon,
giving everyones

new state

Activity
Apply Rule 90!

Assignment 04
Visualize cellular automata to make a cool site!

must include cellular-automata.js
must have method applyRule(config, rule)
config a 0-1 array
rule a number from 0 to 255
application has periodic boundary conditions

HW 04 Demo

Running and Debugging JavaScript
Node.js

a JavaScript runtime environment
run JavaScript outside of a web browser

We’ll use Node.js to test your assignment submission!

Node.js Example
Running .js !le from command line
Interactive mode!

.load !le

.help

.exit

Interactions

CSS Interactions
In Assignment 03, you added interactions to your grid
with the :hover pseudo-class:

.tile:hover {
 border-color: white !important;
 z-index: 100;
}

CSS Transformations
CSS can do more interesting transformations:

scale(x-scale, y-scale)
rotate(amount) (deg)
translate(x-amount, y-amount) (px)
skew(x-skew, y-skew) (deg)

For example:

[Color grid demo]

.tile:hover {
 transform: [transformations];
}

Those are cool, but…
…I’d like to see some motion…

Those are cool, but…
…I’d like to see some motion…

CSS can do animations too!

Check it out!

.tile:hover {
 animation-name: some-animation;
 animation-duration: 1s;
 animation-iteration-count: 1;
}

@keyframes some-animation {
 from {
 /* initial state */}
 to {

 /* final state */}
}

More Interactions!
To have more robust interactions, we need JavaScript

execute methods in response to events

Add an event listener to an element

let box = document.querySelector('#some-box');
box.addEventListener('event-name', someMethod(e));

Some Events:
"click" element is clicked
"mouseover", "mouseout"
keyboard events

…there are

Events also have properties:

e.target the element that event happened to
e.clientX, e.clientY relative coordinates of where
mouse cursor was when the event occured

a lot!

Demo
Let’s make our grid more interactive!

Next Time
Scalable Vector Graphics (SVG)
Objects in JavaScript

