Lecture 03: Color and Style COSC 225: Algorithms and Visualization Spring, 2023

Announcements

1. Assignment 02 Due Monday, 02/13
2. Quiz 02 Wednesday $02 / 15$ (CSS basics)
3. Assignment 03 Due Friday, 02/15 (short)

Outline

1. CSS Crash Course
2. Color

Last Time
 Colored Boxes!

To Draw a Box document division elt

- use div elements
- use style attribute to specify
- dimensions (width, height)
- positioning system (position: static, relative, absolute)
- position coordinates (top, left)
- color (background-color)

Observe
Writing style = "..." for every element is cumbersome!

- a lot of text to draw a single box
- making changes is a pain
- many boxes may have similar style attributes
- no semantics associated with style attribute values

Setting style manually is not good style!
... if only there was a better way...

Introducing CSS

Cascading Style Sheets (CSS): specify style attributes for many elements on a page:

- all elements with same tag (e.g., h1, p, div)
- all elements of same class (set attribute class="someclass")
- an element with a specific id (set attribute id="some-id") Change to CSS styles affect all elements matching a prescribed pattern

Boxes Revisited

Example from before

- big outer box
- smaller boxes inside

Updating the HTML

Rather than setting style attribute directly, specify semantics

- use class attribute to give names to the types of boxes

```
<div class="outer-box">
    <div class="inner-box"></div>
    <div class="inner-box"></div>
</div>
```


Pick Style for Boxes by Type

All boxes (div elements):

- position: absolute; \longleftarrow common to all

Outer box:
dies in doc

- width: 300px;
- height: 300px;
- background-color: black;

$\}$ all outer | boxes |
| :--- | Inner boxes:

- width: 100px;
- height: 100px;

$$
\left\{\begin{array}{l}
\text { all inner boxes } \\
\text { same size }
\end{array}\right.
$$

Where to Put CSS Styling?

Two methods:

1. In .html head:
```
<head>
    <style>
        /* style goes here */
    </style>
</head>
```

2. A separate file, say style.css, then add reference in head:

CSS Style tag style applies to - apply style to all div elements in the document
\square set style attrib. for all dis

CSS Style

- apply style to all div elements in the document

```
div {
    position: absolute;
}
```

- apply style to all elements with class="outer-box"

```
- )uter-box {
    background-color: black;
    width: 300px;
    height: 300px;
}
```


Dealing with Inner Boxes

- apply style to all elements with class="inner-box"

```
.inner-box {
    width: 100px;
    height: 100px;
}
```


Coloring Inner Boxes?

Each inner box has own:

- position (top, left)
- color (background-color)

CSS can style element by id!
Give inner boxes unique ids:

```
<div id="blue-box" class="inner-box"></div>
<div id="red-box" class="inner-box"></div>
```

```
Style Elements by ID
-#blue-box {
    background-color: blue;
    top: 50px;
    left: 50px;
}
#red-box {
    background-color: red;
    top: 150px;
    left: 100px;
}
```


Example

stylish-boxes.html

Notes

1. CSS properties can conflict

- more specific rules win
- id beats class beats tag
- if same specificity, last rule in css source wins

```
Hp { color: red; }
<p>what color is this text</p> C blue
2. Elements can have multiple classes, but id should be dee unique
```

<div id="red-box" class="inner-box special-box"></div>

\section*{Assignment 02}

Go forth and make a stylish website!

\section*{Interlude}

Color and Perception

\section*{What is Color?}

Color, Three Ways:
1. subjective perception of color
2. physical production of color
3. formal representation of color

\section*{What is Color?}

Color, Three Ways:
1. subjective perception of color
2. physical production of color
3. formal representation of color

Content Warning: Massive oversimplifications coming up!!!

\section*{Color and Light}

\section*{Physics \(\Longrightarrow\) Perception}
- Color perception begins with light
- light enters the eye
- light stimulates receptors in the retina
- retinal stimulation results in perception (somehow)

\section*{Color and Light}

\section*{Physics \(\Longrightarrow\) Perception}
- Color perception begins with light
- light enters the eye
- light stimulates receptors in the retina
- retinal stimulation results in perception (somehow)
- "Pure" light has two attributes
- wavelength: hue (e.g., blue, green, red)
- intensity: brightness

image source: Wikipedia

\section*{Perception of Pure Light}
- "Trichromatic" mumans have three types of color receptors (cones) in their retina
- each receptor has characteristic sensitivity to different wavelengths

image source: Feynman Lectures on Physics

\section*{Natural Light}

\section*{"Natural" light comprised of different wavelengths in different proportions}

image source: Wikipedia

\section*{Perception of Color}

Perception of color determined by the amount each color receptor is stimulated
- many different light power spectra correspond indistinguishable colors
- \(\Longrightarrow\) it is possible represent many colors by "mixing" a fixed set of colors

\section*{Generation of Color}

Question. How do color monitors/projectors create so many colors?

\section*{Generation of Color}

Question. How do color monitors/projectors create so many colors?
- Display is a 2d grid of pixels
- Each pixel contains multiple (3?) light producing elements
- red
- green
- blue
- Intensities of each element can be controlled independently

\section*{Different Types of Displays}

\section*{Engineering \(\Longrightarrow\) Perception}

So far:
- can generate light with different characterstics:
- vary intensity (brightness) of three different pixel elements
- red, green, blue
- light emitted by pixels stimulates retina
- red pixel light stimulates red cones more
- relative stimulation of different cones in retna \(\Longrightarrow\) perception of different colors

\section*{Formal Representation of Color}

A color that can be represented on a computer screen is represented by three values:
1. intensity of red sub-pixel
2. intensity of green sub-pixel
3. intensity of blue sub-pixel

Color is a three-dimensional object!
In HTML: rgb ((red, green, blue)
- red, green, blue are integers from 0 to 255
- \(256^{3} \approx 1.7\) million colors!

\section*{Color Picker Demo}

\section*{Observation}

Manipulation of \(\mathrm{r}, \mathrm{g}, \mathrm{b}\) color values is not intuitive
- red, green, blue have natural physical interpretations
- combinations of red, green, blue do not have natural perceptual interpretations (at least to me)

Question. What are the RGB values of the color above?

\section*{Let's Make a Rainbow \\ Used predefined colors:}
```
<div class="flag">
    <div style="background-color: red;" class="stripe"></div>
    <div style="background-color: orange;" class="stripe"></div>
    <div style="background-color: yellow;" class="stripe"></div>
    <div style="background-color: green;" class="stripe"></div>
    <div style="background-color: blue;" class="stripe"></div>
    <div style="background-color: purple;" class="stripe"></div>
</div>
```

\section*{The Result}

Question. What do you think of HTML's color choices?

\section*{The Result}

\section*{Activity (Pairs)}

Make a rainbow with 8 stripes!
- use RGB colors
- how to interpolate color values so flag looks "rainbowish?"

Dowload rainbow-eight.html to get started

\section*{Questions}
1. What RGB values did you use for the stripes?
2. Is there a pattern of how to pick the color of the next stripe?
3. How do combinations of RGB values relate to your perception of the colors?
- What adjectives would you use to describe the colors you picked?
4. Do colors look similar on your screen and the projector?

\section*{Next Time}
1. Colors + Geometry = Color Spaces
2. Introducing JavaScript```

