
Lecture 36: NP, Completed

COSC 311 Algorithms, Fall 2022



Announcements
1. Final Exam: Friday, Dec. 16 9:00–12:00

same format as midterms
~8 questions

2. Final Guide:
posted this weekend

3. Grading:
assignments 2, 3 this weekend
assignments 4, 5 next week

&> OH schedule



Previously
Two Classes of Problems:

P: decision problems solvable in polynomial time

NP: decision problems with a polynomial time veri!er

A decision problem  is NP complete if

1.  NP

2. For every  NP, .

Theorem [Cook, Levin]. Boolean Satis!ability (SAT) is NP
complete.
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Today
1. More NP Complete Problems
2. Coping with NP Completeness



Simpler Boolean Formulae
Terminology:

a literal is a variable or its negation: 
a clause is an expression of the from
1.  (conjuctive clause) where each  is

a literal, or
2.  (disjunctive clause) where each  is

a literal
a conjunctive normal form (CNF) expression is an
expression of the form  where each 
is a disjunctive clause

Observation: a CNF formula evaluates to true  all
clauses evaluate to true

x, x̄

( ∧ ∧ ⋯ ∧ )z1 z2 zk zi

( ∨ ∨ ⋯ ∨ )z1 z2 zk zi
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3-SAT
De!nition. A 3-CNF formula is a Boolean formula in
conjunctive normal form such that every clause contains 3
literals.

Example.

3-SAT:

Input: a 3-CNF formula 

Output: “yes”  is satis!able

φ(w, x, y, z) = (x ∨ y ∨ z) ∧ (y ∨ ∨ w) ∧ ( ∨ ∨ )z̄ x̄ ȳ w̄

φ
⟺ φ
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3-SAT is NP-Complete
Theorem (Tseytin 1970). Any Boolean formula  can be
e"ciently (in polynomial time) transformed into a 3-CNF
formula  such that:

1. if  is satis!able, then so is 

2. if  is not satis!able, then neither is 

φ
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3-SAT is NP-Complete
Theorem (Tseytin 1970). Any Boolean formula  can be
e"ciently (in polynomial time) transformed into a 3-CNF
formula  such that:

1. if  is satis!able, then so is 

2. if  is not satis!able, then neither is 

φ

ψ
φ ψ
φ ψ

Consequences.

1. SAT  3-SAT
2. 3-SAT is NP complete

≤P &Est



Relationships
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Showing NP Completeness
In order to show a problem  is NP complete, show:

1. 

describe a polynomial time veri!er for 

2.  for any NP complete problem 

describe a polynomial time reduction from  to 

A
A ∈ NP
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IS is NP Complete
Theorem. IS in NP Complete.

Question. What do we need to show?

Input: G, k

yout:
"Yes" () a has

inclep. Set
of size k

Already ISEND, gave verifier

for IS in lest. 34

·
To show: reduction from N-

comp late problem to IS
-



IS is NP Complete
Theorem. IS in NP Complete.

Question. What do we need to show?

Strategy. Reduction from 3-SAT

show 3-SAT  IS

Question. How to transform a 3-CNF  into a graph 
such that solving IS on  tells us whether  is satis!able?

≤P

φ G
G φ



Example
φ(w, x, y, z) = (x ∨ y ∨ z) ∧ (y ∨ ∨ w) ∧ ( ∨ ∨ )z̄ x̄ ȳ w̄

= #clauses ⑳3
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Construction, Formalized
Input:

3-SAT formula 

clause  with  literals (variables
or negated variables)

Output:

graph  on  vertices

edges:
for each ,  form a triangle

if , add edge  (sim. for other variables)

φ = ∧ ∧ ⋯ ∧C1 C2 Ck
= ( ∨ ∨ )Ci xi yi zi , ,xi yi zi

G = (V , E) n = 3k
V = { , , , , , , … , , , }x1 y1 z1 x2 y2 z2 xk yk zk

i , ,xi yi zi
= ¬xi xj ( , )xi xj
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Claim 1
Suppose  a 3-SAT formula with  clauses, 
corresponding graph. If  is satis!able, then  has an
independent set of size .

φ k G
φ G

k
given: satisfying asset

for c

u = set of vertices labelled wh
1
true" literals

For each triangle, if mulf.

vertices are in U, Choose

call resulting set u

&ow: U' is an inclep. set of

size ke.



Claim 2
Suppose  a 3-SAT formula with  clauses, 
corresponding graph. If  has an independent set of size 

, then  is satis!able.

φ k G
G

k φ

u = inclep set

↳ u,,uz..., we literals

show Set x1,x2, ..., Xn variables
-

iM C St. all U..., Uk
are

"true" then we get satisfining
assignment.



Conclusion
The correspondence  is a polynomial time
reduction from 3-SAT to IS.

.

 IS is NP complete

Previously. Showed Vertex Cover (VC) satis!es IS  VC

 VC is NP complete

φ → G

⟹ 3-SAT IS≤P
⟹

≤P

⟹



More Relationships

NP-SATD
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NP Hard Problems
A problem  is NP Hard if  for some NP-complete
problem .

A B A≤P
B



NP Hard Problems
A problem  is NP Hard if  for some NP-complete
problem .

A B A≤P
B

Examples.

1. MaxIS and MVC
2. Traveling Salesperson (TSP)

input: weighted graph , set  of vertices
output: minimum weight cycle containing all vertices
of 

3. Subset Sum
input: numbers , target 

output: subest of numbers that sum to 

G U

U

, , … ,w1 w2 wn s
s



Coping with NP Hardness
Fact of Life. Many important practical problems are NP-
Hard.

Question. So what do we do about it?



Coping Strategies
What if we need to solve an NP hard problem?
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Coping Strategies
What if we need to solve an NP hard problem?

deal with it: exact (exponential time) algorithms
heuristics: no running time or correctness guarantee

local search
machine learning

approximation algorithms: e"cient algorithms with
guaranteed approximation to optimal
parameterized algorithms: classify instances that can be
solved e"ciently



Where to go from Here?
1. More algorithms!

parallel & distributed algorithms (COSC 273, 373)
computational geometry (COSC 225)
randomized algorithms
streaming and sublinear algorithms
approximation algorithms

2. More complexity!
automata/computability theory (COSC 401)
computational complexity
cryptography
models of computation



Thank You!


