Lecture 32: Bipartite

Matchings and Reductions
COSC 311 Algorithms, Fall 2022



Overview

1. Reductions
2. Maximum Bipartite Matchings
3. Reduction to Maximum Flow



Big Picture, So Far

Effictent algorithms for many problem:s:

e sorting
e graph problems
» shortest paths -
= Eulerian circuits-
* mIinimum spanning trees -
e interval scheduling
e sequence alignment
e stable matching

All solved in O(ZX_z) time (N = size of instance)



A Question

What algorithmic problems cannot be solved efficiently?



A Question

What algorithmic problems cannot be solved efficiently?

« What do we mean by “efficiently?”

e How could we show that no algorithm can solve a
problem efhiciently?

» What is an “algorithm,” anyway?



[Last Unit of the Semester
Algorithmic Reality

For many practical problems:

1. no eflicient algorithm is known
2. no proof that there isn’t an eflicient algorithm

What do we do in this situation?
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What do we do in this situation?

Reductions & NP Completeness

e focus on relationships between problems

» what does it mean for problem A to be no
harder/easier than problem B?



Algorithm Life

Observation. Algorithm design is challenging.
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Observation. Algorithm design is challenging.

Lifestyle Choice. Avoid designing new algorithms (when
you can get away with it).
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Algorithm Life

Observation. Algorithm design is challenging.

Lifestyle Choice. Avoid designing new algorithms (when
you can get away with it).

How?

Idea. Given a new problem A, transform it into a problem B
you already know how to solve!

Example from homework: Scheduling contractors with bids
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Reductions 5%&%@3 S\ est

Properties of nice transformatiyons: _—

1. transforming instances of|A |to instances o 'E can be
done efficiently

2. solution to B instance can beefficiently transformed back
to solution for A instance (it w  Sueg ket \)o\\)“
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1 + 2 = reduction from problem A to problem B
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Reductions

Properties of nice transformations:

1. transforming instances of A to instances of B can be
done efficiently

2. solution to B instance can be effictently transformed back
to solution for A instance

1 + 2 = reduction from problem A to problem B
Coarse notion of ‘efficiency:

e transformations can be done in time O(N¢) for some
constant ¢ (N = input size)

In this case reduction is ' polynomial time reduction

e write A <p B if polynomial time reduction from A to B



Practical Value of Reductions
If IA <p Bjthen:

e any eflicient solution to B gives an eflicient solution to A

e an improved algorithm for B may give an improved
algorithm for A

New Challenge

e Given a problem A, solve it by reducing to another
problem B that you already have an algorithm for



Internship Assignments, Again

In a small world...

e Three students: a, b, ¢
e Three internships: X, Y, Z

Students/Internships have acceptability criteria (not
preferences)

How to match students an internships?



Viewed as a Graph
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Not Great Matching
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Best Matching

sudents

internships




Maximum Bipartite Matchin&(MBM) '_
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Input:

* bipartite graph G = (V, E) l ;//
« V partitioned into two disjoint sets, S, 7;‘)
e All edges are pairs (s,7) with s € 5,7 €

Output:

e amatching M = {(s1,%1),(s2,%2), ..., (Sk, &)} o
. ) - 7te
each (s;, ;) 1s an edge in G. & agu_p\u\o\a._ % 0%(\/&(
» each s € §,¢ € T appears in at most one pair
e M is amaximum matching: there is no matching of size
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Simplest Interesting Example

Does greedily adding edges to form a matching always
result in a maximum matching?



Greedy Doesn't Work

Issue: choosing an edge greedily/prematurely may block
other edges that could result in a larger matching

e does thlS sound famlhar?

Metwogl How




Adapting to Our New Lifestyle

Don’t design a new algorithm...

..Instead make a reduction to...
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Don’t design a new algorithm...

..Instead make a reduction to... ‘/
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Reduction to Max-Flow

How to turn MBM into a flow problem?
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A Max-Flow Instance



Formalizing the Reduction

Input:

e Bipartite graph G = (V,E) withV =SU T

Output:

e Directed graph G’ = (V' E’) ,

V' =Vu{st] — add Soun(u <° Siale

e For E’:
= direct all edges (s;,7;)) € EfromStoT ~—

= add edges (s, 5;) forall 5; € S OZ'; 4\?{
« add edges (;, 1) forallt; € T 7%‘

g | .(] ) Or a J 5 w .
= all capacities are 1
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[ Start with Bipartite Graph




II Form Max Flow Instance



I1I Solve Max Flow
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IV Form Matching from Flow



A Technicality

Assume all flows are integral flows:

e amount of flow across each edge is an integer
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Note. Ford-Fulkerson always gives an integral flow.
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Claim 1

If G has a matching of size k, then G’ admits a flow f of
value k.
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If G’ admits an integral flow of value k, then G has a
matching of size k.
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Implications

1. Value of the maximum flow in G’ equals the size
maximum matching in G.

2. Given a maximum (integral) flow in G’, we can find a
maximum matching in G



Conclusions

e Found a reduction from Maximum Bipartite Matching to
Max Flow

e Any (integral) Max Flow algorithm can be used to solve

MBM . gy
= any improvement in Max Flow algorithms will yield a
corresponding improvement in MBM solution

e We showed MBM <p Max Flow

» MBM is “no harder” than Max Flow
» Max Flow 1s “no easier” than MBM



Next Time

Another view of/@

e suppose A is a “hard” problem
e we showA <p B _
e then we've established that B is no easier than A

= any eflicient solution to B would imply an efficient
solution to A



