Lecture 32: Bipartite

Matchings and Reductions
COSC 311 Algorithms, Fall 2022

Overview

1. Reductions
2. Maximum Bipartite Matchings
3. Reduction to Maximum Flow

Big Picture, So Far

Effictent algorithms for many problem:s:

e sorting
e graph problems
» shortest paths -
= Eulerian circuits-
* mIinimum spanning trees -
e interval scheduling
e sequence alignment
e stable matching

All solved in O(ZX_z) time (N = size of instance)

A Question

What algorithmic problems cannot be solved efficiently?

A Question

What algorithmic problems cannot be solved efficiently?

« What do we mean by “efficiently?”

e How could we show that no algorithm can solve a
problem efhiciently?

» What is an “algorithm,” anyway?

[Last Unit of the Semester
Algorithmic Reality

For many practical problems:

1. no eflicient algorithm is known
2. no proof that there isn’t an eflicient algorithm

What do we do in this situation?

[Last Unit of the Semester
Algorithmic Reality

For many practical problems:

1. no eflicient algorithm is known
2. no proof that there isn’t an eflicient algorithm

What do we do in this situation?

Reductions & NP Completeness

e focus on relationships between problems

» what does it mean for problem A to be no
harder/easier than problem B?

Algorithm Life

Observation. Algorithm design is challenging.

Algorithm Life

Observation. Algorithm design is challenging.

Lifestyle Choice. Avoid designing new algorithms (when
you can get away with it).

How? |
Com Nne PLEND LS o\\gcﬁ F\wy
Cad SOehonships bewan
\(\uﬁ) e A& o\ ?JQ\D(Q.VVLS.

Algorithm Life

Observation. Algorithm design is challenging.

Lifestyle Choice. Avoid designing new algorithms (when
you can get away with it).

How?

Idea. Given a new problem A, transform it into a problem B
you already know how to solve!

Example from homework: Scheduling contractors with bids

BlS Ko Conbeactors

— :\V\L’\f\l&.(Q\'Q —\’L\’-’v QO
- el Yokl (
Rid — &\\‘;m KA

o ¢l

Reductions 5%&%@3 S\ est

Properties of nice transformatiyons: _—

1. transforming instances of|A |to instances o 'E can be
done efficiently

2. solution to B instance can beefficiently transformed back
to solution for A instance (it w Sueg ket \)o\\)“

\y

— '\1' oS

T«\j&. ok B = [So{‘v\ &? 3 l bacl o
K

N O\R(j-
O

1 + 2 = reduction from problem A to problem B

Ve

(D 5d'n.

V
E\I\S{'~ R pl\l - =D Ljﬁ(,at ‘]'0 Pfob@

Reductions

Properties of nice transformations:

1. transforming instances of A to instances of B can be
done efficiently

2. solution to B instance can be effictently transformed back
to solution for A instance

1 + 2 = reduction from problem A to problem B
Coarse notion of ‘efficiency:

e transformations can be done in time O(N¢) for some
constant ¢ (N = input size)

In this case reduction is ' polynomial time reduction

e write A <p B if polynomial time reduction from A to B

Practical Value of Reductions
If IA <p Bjthen:

e any eflicient solution to B gives an eflicient solution to A

e an improved algorithm for B may give an improved
algorithm for A

New Challenge

e Given a problem A, solve it by reducing to another
problem B that you already have an algorithm for

Internship Assignments, Again

In a small world...

e Three students: a, b, ¢
e Three internships: X, Y, Z

Students/Internships have acceptability criteria (not
preferences)

How to match students an internships?

Viewed as a Graph

sudents

?.\ A\ 'V\/\o\‘c W ’\C\

V\/\o\ ‘(C.\N-S

cCa \:\{& .MO&C\& WMOTe-

1)

internships

\0 \\LQ ‘VV\G\S\’ C&L&

LN Y OV

4

Not Great Matching

sudents

x
a

>

internships

Best Matching

sudents

internships

Maximum Bipartite Matchin&(MBM) '_
SS(UK&U‘A "\“\&‘Q_C“\S\A(QS

Input:

* bipartite graph G = (V, E) l ;//
« V partitioned into two disjoint sets, S, 7;‘)
e All edges are pairs (s,7) with s € 5,7 €

Output:

e amatching M = {(s1,%1),(s2,%2), ..., (Sk, &)} o
.) - 7te
each (s;, ;) 1s an edge in G. & agu_p\u\o\a._ % 0%(\/&(
» each s € §,¢ € T appears in at most one pair
e M is amaximum matching: there is no matching of size

£ >k

Simplest Interesting Example

Does greedily adding edges to form a matching always
result in a maximum matching?

Greedy Doesn't Work

Issue: choosing an edge greedily/prematurely may block
other edges that could result in a larger matching

e does thlS sound famlhar?

Metwogl How

Adapting to Our New Lifestyle

Don’t design a new algorithm...

..Instead make a reduction to...

Adapting to Our New Lifestyle

Don’t design a new algorithm...

..Instead make a reduction to... ‘/
Maximum Flow! C&&&‘ -Qfé‘%é REA
i’ DRG ¢ o0
Y-
» N
S Ve

Find 'ClOu) ‘\/\\o&_ MoK W (2SS (vounf
oQ Llad Lo S bt

Reduction to Max-Flow

How to turn MBM into a flow problem?

]
i

\/

5 g

| L
€

G

A Max-Flow Instance

Formalizing the Reduction

Input:

e Bipartite graph G = (V,E) withV =SU T

Output:

e Directed graph G’ = (V' E’) ,

V' =Vu{st] — add Soun(u <° Siale

e For E’:
= direct all edges (s;,7;)) € EfromStoT ~—

= add edges (s, 5;) forall 5; € S OZ'; 4\?{
« add edges (;, 1) forallt; € T 7%‘

g | .(]) Or a J 5 w .
= all capacities are 1

—

[Start with Bipartite Graph

II Form Max Flow Instance

I1I Solve Max Flow

AT

< >

\@_1_@/

IV Form Matching from Flow

A Technicality

Assume all flows are integral flows:

e amount of flow across each edge is an integer

\

1#

o O
7N &
&N 5

Note. Ford-Fulkerson always gives an integral flow.

'Q'KO\JJ EL (-,(e,* < :U\ Q‘AAC&L&“

Wadc s

Eloww O SoeS wob

A

((,'C’

Claim 1

If G has a matching of size k, then G’ admits a flow f of
value k.

— pr—
\ SN

fol eau (S ,’t;,\ \WN ‘MG\’\'C.(«(‘M?
L owwit ofF Flow a\cywl

< Qusc-&-

A { flow I werching ¢d
1 Valwe o _i;(o A ?\ro\\uz T 70\;@;{\\.

Qc?Q(c;\cf’/“ s o A

If G’ admits an integral flow of value k, then G has a
matching of size k.

/C\ : ®
1\@ }\‘ca/ © ,,
Considug W\asrd/tluf} eé\fjﬂé w
POS» How.
Huse wask fem &

WAU&\‘L‘&MC%

Claim 2 o o \

Implications

1. Value of the maximum flow in G’ equals the size
maximum matching in G.

2. Given a maximum (integral) flow in G’, we can find a
maximum matching in G

Conclusions

e Found a reduction from Maximum Bipartite Matching to
Max Flow

e Any (integral) Max Flow algorithm can be used to solve

MBM . gy
= any improvement in Max Flow algorithms will yield a
corresponding improvement in MBM solution

e We showed MBM <p Max Flow

» MBM is “no harder” than Max Flow
» Max Flow 1s “no easier” than MBM

Next Time

Another view of/@

e suppose A is a “hard” problem
e we showA <p B _
e then we've established that B is no easier than A

= any eflicient solution to B would imply an efficient
solution to A

