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Overview
1. Reductions
2. Maximum Bipartite Matchings
3. Reduction to Maximum Flow



Big Picture, So Far
E!cient algorithms for many problems:

sorting
graph problems

shortest paths
Eulerian circuits
minimum spanning trees

interval scheduling
sequence alignment
stable matching

All solved in  time (  size of instance)O( )N 2 N =

I
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A Question
What algorithmic problems cannot be solved e!ciently?



A Question
What algorithmic problems cannot be solved e!ciently?

What do we mean by “e!ciently?”

How could we show that no algorithm can solve a
problem e!ciently?

What is an “algorithm,” anyway?

-



Last Unit of the Semester
Algorithmic Reality

For many practical problems:

1. no e!cient algorithm is known
2. no proof that there isn’t an e!cient algorithm

What do we do in this situation?



Last Unit of the Semester
Algorithmic Reality

For many practical problems:

1. no e!cient algorithm is known
2. no proof that there isn’t an e!cient algorithm

What do we do in this situation?

Reductions & NP Completeness

focus on relationships between problems
what does it mean for problem  to be no
harder/easier than problem ?

A
B



Algorithm Life
Observation. Algorithm design is challenging.



Algorithm Life
Observation. Algorithm design is challenging.

Lifestyle Choice. Avoid designing new algorithms (when
you can get away with it).

How?

combine previous algorithms

Find relationships between

new and old problems.



Algorithm Life
Observation. Algorithm design is challenging.

Lifestyle Choice. Avoid designing new algorithms (when
you can get away with it).

How?

Idea. Given a new problem , transform it into a problem 
you already know how to solve!

Example from homework: Scheduling contractors with bids

A B
-

-

Bits from contractors
- interval of find
~ cover total time for Work

mode in graphBid -> o



Reductions
Properties of nice transformations:

1. transforming instances of  to instances of  can be
done e!ciently

2. solution to  instance can be e!ciently transformed back
to solution for  instance

 reduction from problem  to problem 

A B

B
A

1 + 2 = A B

scheduling shortest
problem paths

Wf ID
Given shortest path

trous,

*ofBinto is back to

orig
I

O ↑ NE soln
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Reductions
Properties of nice transformations:

1. transforming instances of  to instances of  can be
done e!ciently

2. solution to  instance can be e!ciently transformed back
to solution for  instance

 reduction from problem  to problem 

A B

B
A

1 + 2 = A B
Coarse notion of e!ciency:

transformations can be done in time  for some
constant  (  input size)

In this case reduction is polynomial time reduction

write  if polynomial time reduction from  to 

O( )N c

c N =

A B≤P A B



Practical Value of Reductions
If , then:

any e!cient solution to  gives an e!cient solution to 

an improved algorithm for  may give an improved
algorithm for 

New Challenge

Given a problem , solve it by reducing to another
problem  that you already have an algorithm for

A B≤P

B A
B

A

A
B
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Internship Assignments, Again
In a small world…

Three students: 

Three internships: 

Students/Internships have acceptability criteria (not
preferences)

How to match students an internships?

a, b, c
X, Y , Z

a : Y , X
b : Z, X
c : Y , Z

X : a, b
Y : a, c
Z : b, c

A- symmetric



Viewed as a Graph

Pink matching blue matches

matches 2, everyone -
can't match moreo



Not Great Matching



Best Matching



Maximum Bipartite Matching (MBM)
Input:

bipartite graph 

 partitioned into two disjoint sets, 

All edges are pairs  with , 

Output:

a matching 

each  is an edge in 

each ,  appears in at most one pair

 is a maximum matching: there is no matching of size

G = (V , E)
V S, T

(s, t) s ∈ S t ∈ T

M = {( , ), ( , ), … , ( , )}s1 t1 s2 t2 sk tk
( , )si ti G
s ∈ S t ∈ T

M
ℓ > k

students internships
↑~a

s t->

·
=>acceptable to th



Simplest Interesting Example

Does greedily adding edges to form a matching always
result in a maximum matching?

choose this,
E we lose..



Greedy Doesn’t Work

Issue: choosing an edge greedily/prematurely may block
other edges that could result in a larger matching

does this sound familiar?
#

work flow



Adapting to Our New Lifestyle
Don’t design a new algorithm…

…instead make a reduction to…



Adapting to Our New Lifestyle
Don’t design a new algorithm…

…instead make a reduction to…

Maximum Flow!

g

ties~ Directed edges
capa

2)

source S 2 -
sink

↓ O E

Find flow that maximizes amount

of fluid from s to t



Reduction to Max-Flow
How to turn MBM into a "ow problem?

N⑤T E

& -I
⑭ I





A Max-Flow Instance



Formalizing the Reduction
Input:

Bipartite graph  with 

Output:

Directed graph 

For :

direct all edges  from  to 

add edges  for all 

add edges  for all 

all capacities are 

G = (V , E) V = S ∪ T

= ( , )G′ V ′ E ′

= V ∪ {s, t}V ′

E ′

( , ) ∈ Esi tj S T
(s, )si ∈ Ssi
( , t)tj ∈ Ttj

1

- add source - sink

-

↳FoS of
-Et
*s
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I Start with Bipartite Graph



II Form Max Flow Instance



III Solve Max Flow



IV Form Matching from Flow



A Technicality
Assume all "ows are integral !ows:

amount of "ow across each edge is an integer

Note. Ford-Fulkerson always gives an integral "ow.

1 T~& ↳

E

--

flow I gets included in
matching

↓low 0 does not



Claim 1
If  has a matching of size , then  admits a "ow  of
value .

 

G k G′ f
k

For each (siti) in matching
route 1 unit of flow along

5, Si,ti, t
1value of flow permatchingedte

=>K



Claim 2
If  admits an integral "ow of value , then  has a
matching of size .

 

G′ k G
k

gire a f9 a)I
or i tieSO copaci
-

:
consider matching edges wi

Pos, flow.
these must form a

matching...



Implications
1. Value of the maximum "ow in  equals the size

maximum matching in .

2. Given a maximum (integral) "ow in , we can #nd a
maximum matching in 

G′

G
G′

G



Conclusions
Found a reduction from Maximum Bipartite Matching to
Max Flow
Any (integral) Max Flow algorithm can be used to solve
MBM

any improvement in Max Flow algorithms will yield a
corresponding improvement in MBM solution

We showed MBM  Max Flow
MBM is “no harder” than Max Flow
Max Flow is “no easier” than MBM

≤P

might



Next Time
Another view of :

suppose  is a “hard” problem

we show 

then we’ve established that  is no easier than 

any e!cient solution to  would imply an e!cient
solution to 

≤P

A
A B≤P

B A
B

A
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