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Annoucement
Midterm II on Wednesday

Practice solutions coming soon
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Last Time
Max Flow Problem:

Input.

weighted directed graph 

weights = edge capacities 

source , sink 

all edges oriented out of 

all edges oriented into 

Output.

!ow  of maximum value
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We Showed
Greedy strategy doesn’t always work
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Ford-Fulkerson Idea
Given a !ow :

allow forward !ow to be “undone”
when routing forward !ow  across edge ,
create backwards edge  with capacity 

graph with backwards edges = residual graph
backwards !ow cancels out forward !ow

Ford-Fulkerson Algorithm:

1. apply greedy strategy to residual graph
2. update residual graph with new !ow
3. continue until no unsaturated path from  to  remains

f

f (u, v) (u, v)
(v, u) f (u, v)

s t

2(v,2)

the

orfinit



Ford-Fulkerson Example
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Questions
How do we…

1. "nd augmenting path  from  to ?

2. update !ow  according to ?

3. update residual graph ?
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Formalizing Ford-Fulkerson
  MaxFlow(G, s, t):
    Gf <- G
    f <- zero flow
    P <- FindPath(Gf, s, t)
    while P is not null do:
      b <- min capacity of any edge in P
      Augment(Gf, f, P, b)
      P <- FindPath(Gf, s, t)
    endwhile
    return f

on
residual graph

aflow
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Augment Procedure
  Augment(Gf, f, P, b):
    for each edge (u, v) in P
      if (u, v) is forward edge then
        f(u, v) <- f(u, v) + b
        c(u, v) <- c(u, v) - b
        c(v, u) <- c(v, u) + b
      else
        f(v, u) <- f(v, u) - b
        c(v, u) <- c(v, u) + b
        c(u, v) <- c(u, v) - b
i



Running Time
Assume:

1. all capacities are integers
2.  sum of capacites of edges out of 

Observe:

1. How long to "nd augmenting path ?

2. How long to run Augment?

3. How many iteraions of "nd/augment?

Conclude: Overall running time?

C = s

P

n = f nocks
m:If edges

W

0(m)

8 (m) Cor 0(ul)
t

1 be eachiter increasea2 I T

am S-
⑧
-

0(Cm) I
3



Optimality of Flow?
Question. How do we know this !ow is optimal?
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Cuts
De!nition. An  -  cut  is a partition of vertices into
two disjoint sets with  in  and  in .

The capacity of , denoted  is the sum of the
capacities of the edges out of .
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(A, B) cap(A, B)
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Cut Example

Of
A : 33,1,3,53 B:92,4, t3

CapCA,B) E2+1



Correctness of Ford-Fulkerson
Idea. Relate values of !ows to capacities of cuts:

max !ow = min cut

Outline:

for any cut , net !ow across cut = value of !ow

 max !ow  min cut

if  has no augmenting path in residual graph, then
there is a cut with net !ow = value of cut

 value of  = capacity of cut

 min cut

Together these imply Ford-Fulkerson produces max !ow
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Max Flow/Min Cut Example



Claim 1
For any  -  cut  and !ow , 

 !ow out of 

 !ow into 

Consequence. For all cuts , 

s t (A, B) f val(f ) = (A) − (A)f out f in

(A) =f out A
(A) =f in A

(A, B) val(f ) ≤ cap(A, B)
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Claim 1 Illustration
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Claim 2
Suppose  does not have an augmenting path in the
auxiliary graph.

 nodes reachable from  in auxiliary graph

 nodes not reachable

Then 
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Claim 2 Illustration
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Correctness Follows
Consider !ow  found by Ford-Fulkerson.

1. By claim 1, no !ow can have value larger than any cut
capacity

2. By claim 2, 

These imply:

1.  is a maximum !ow

2.  is a minimum cut
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Conclusion
 a weighted, directed graph with minimum cut

capacity .

Ford-Fulkerson "nds maximum !ow in time .

can be modi"ed to "nd minimum cut as well

G = (V , E)
C
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Next Time
1. Midterm on Wednesday
2. Stable Matching + Will’s research on Friday
3. Reductions and NP completeness a#er break


