[Lecture 30: Network Flow III

COSC 311 Algorithms, Fall 2022



Annoucement
Midterm II on Wednesday

e Practice solutions coming soo
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[L.ast Time
Max Flow Problem:

Input.

e weighted directed graph G = (V, E)
= weights = edge capacities > 0

e source s, sink 7

= all edges oriented out of s
= all edges oriented into ¢

Output.

e flow f of maximum value

« val(f) = ). f(s,v)
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We Showed

Greedy strategy doesn’t always work
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Ford-Fulkerson Idea

S e
Given a flow f: ] \¢
e allow forward flow to be “undone” v -(‘r\“(\')

e when routing forward flow f(u, v) across edge (u, v),
create backwards edge (v, u) with capacity f(u, v)

» graph with backwards edges = residual graph
e backwards flow cancels out forward flow

Ford-Fulkerson Algorithm:

1. apply greedy strategy to residual graph
2. update residual graph with new flow

3. continue until no unsaturated path from s to f remains



Ford-Fulkerson Example
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Questions
How do we... N ‘{‘M‘“‘
1. find augmenting path P from s to t? (53@‘"‘"Sc
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Formalizing Ford-Fulkerson

MaxFlow(e, s, ) Tt5dmal ¢ <Pl
Gf <- G r‘l\ObJ
- zero flow

P <- FindPath(Gf, s, t) —m— g?ﬁ

while P is not null do:
b <- min capacity of any edge in P -
Augment (Gf, £, P, b) é'\ \1\960\‘—(
P <- FindPath(Gf, s, t)

endwhile

return £



Augment Procedure

Augment (Gf, £, P, b):

for each edge (u, v) in P

if (u, v) is forward edge then

‘ f(u, f(u, v) + b

c(u, c(u, v) - b

c(v, c(v, o)
else

f(v, u

c(v, u

c(u,




Running Time
Assume:

1. all capacities are integers
2. Qz sum of capacites of edges out of s

Observe:

1. How long to find augmentmg path P?

)

2. How long to run Augment?

(9 Cm) (or G-(w) )

3. How many iteraions of ﬁnd/ augmentp ‘
A L=C \v\ {2eSt
C e Q\:o\\ by 7

Conclude: Overall running tlmep

(5(C-w) S




Optimality of Flow?

Question. How do we know this{low is optimal?
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Cuts

Definition. An s - ¢ cut (A, B) is a partition of vertices into
two disjoint sets with s in A and ¢ in B.

The capacity of (A, B), denoted cap(A, B) is the sum of the
capacities of the edges out of A.



Cut Example

\@ i i O
. §2,4,t
- 85,1295 - 12,4
RELE capl BB) = Bl
e |s,1 s,5 1,3 1,4 2,t 3,4 4,t 5,3 5,2 = 6.

f(e) 2 3 0 2 2 1 3 1 2



Correctness of Ford-Fulkerson

Idea. Relate values of flows to capacities of cuts:
e max flow = min cut
Outline:

e for any cut (A, B), net flow across cut = value of flow
» —> Mmax flow < min cut

e if f has no augmenting path in resi
there is a cut with net flow = value of cut

= = value of f = capacity of cut
e \@z cap(A, B) > minml.)

Together these imply Ford-Fulkerson produces max flow

aph, then




Max Flow/Min Cut Example
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e s,1,s,5 1,3 /1,4 2,t 3,4 4,t5,3|5,2
f(e) 2 3 1 1 2 1 2 1 2



Claim 1
For any s - ¢ cut (A, B) and flow £, val(f) = f°"(A) — f"(A)

o fOU(A) = flow out of A \
e fIN(A) = flow into A
Consequence. For all cuts (A, B), val(f) < Ea/p(A, B)
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Claim 1 Illustration

e s,1 s,5\1,3 1,4 |2,t 3,4|/4,t 5,3 |5,2
f(e) 2 3 0 2 2 1 3 1 2
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Claim 2

Suppose f does not have an augmenting path in the
auxiliary graph.

e A* = nodes reachable from s in auxiliary graph
e B* = nodes not reachable

Then val(f) = cap(A*, B¥)



Claim 2 Illustration

e s,1,s,5 1,3 /1,4 2,t 3,4 4,t5,3|5,2
f(e) 2 3 1 1 2 1 2 1 2



Correctness Follows
Consider flow f found by Ford-Fulkerson.

1. By claim 1, no flow can have value larger than any cut
capacity

2. By claim 2, val(f) = cap(A, B)
These imply:

1. f 1s a maximum flow
2. (A, B) 1s a minimum cut



Conclusion

G = (V, E) aweighted, directed graph with minimum cut
capacity C.

Ford-Fulkerson finds maximum flow in time O(Cm).

e can be modified to ind minimum cut as well



Next Time

1. Midterm on Wednesday
2. Stable Matching + Will’s research on Friday
3. Reductions and NP completeness after break



