
Lecture 30: Network Flow III

COSC 311 Algorithms, Fall 2022

Annoucement
Midterm II on Wednesday

Practice solutions coming soon
-

Last Time
Max Flow Problem:

Input.

weighted directed graph

weights = edge capacities

source , sink

all edges oriented out of

all edges oriented into

Output.

!ow of maximum value

G = (V , E)
> 0

s t
s

t

f
val(f) = f (s, v)∑s→v

val():sanda

f⑤
* ↓ K
&C

We Showed
Greedy strategy doesn’t always work

->r
&

8 T
↑E ↑

Ford-Fulkerson Idea
Given a !ow :

allow forward !ow to be “undone”
when routing forward !ow across edge ,
create backwards edge with capacity

graph with backwards edges = residual graph
backwards !ow cancels out forward !ow

Ford-Fulkerson Algorithm:

1. apply greedy strategy to residual graph
2. update residual graph with new !ow
3. continue until no unsaturated path from to remains

f

f (u, v) (u, v)
(v, u) f (u, v)

s t

2(v,2)

the

orfinit

Ford-Fulkerson Example

e
f(e)

(s, 1) (s, 2) (1, 2) (1, t) (2, 1) (2, t)
0 0 0 0 0 0

s

1

2

t

3

2 3

2

3 0

reverse

I

s

1

2

t

3

2 3

2

3 0

e
f(e)

(s, 1) (s, 2) (1, 2) (1, t) (2, 1) (2, t)
0 0 0 0 0 0

s

1

2

t

3

2 3

2

3 0

e
f(e)

(s, 1) (s, 2) (1, 2) (1, t) (2, 1) (2, t)
3 0 3 0 0 3

·
g

I 8
s

O

I

s

1

2

t

0

2 0

2

0 3

e
f(e)

(s, 1) (s, 2) (1, 2) (1, t) (2, 1) (2, t)
3 0 3 0 0 3

:2

s

1

2

t

0

2 0

2

0 3

e
f(e)

(s, 1) (s, 2) (1, 2) (1, t) (2, 1) (2, t)
3 0 3 0 0 3

s

1

2

t

0

2 0

2

0 3

e
f(e)

(s, 1) (s, 2) (1, 2) (1, t) (2, 1) (2, t)
3 0 3 0 0 3

s

1

2

t

0

2 0

2

0 3

e
f(e)

(s, 1) (s, 2) (1, 2) (1, t) (2, 1) (2, t)
3 2 1 2 0 3

⑱sof

s

1

2

t

0

0 0

0

2 1

e
f(e)

(s, 1) (s, 2) (1, 2) (1, t) (2, 1) (2, t)
3 2 1 2 0 3

g

·

s

1

2

t

0

0 0

0

2 1

e
f(e)

(s, 1) (s, 2) (1, 2) (1, t) (2, 1) (2, t)
3 2 1 2 0 3

EDEI

O

Questions
How do we…

1. "nd augmenting path from to ?

2. update !ow according to ?

3. update residual graph ?

P s t

f P

Gf

↓:
min remainin

capacity
th

DFS, DS,T along Pa

cu,v) is forward edge, incrementby b
Cu,U) is backward edge; decrement

fin) by by

cu,v) is fuel edge:
*
correspo

· decrement captu,v) by "3 fed edge
·
Increment (cp(v,U) by

cu,v) is backward edge: same!

Formalizing Ford-Fulkerson
 MaxFlow(G, s, t):
 Gf <- G
 f <- zero flow
 P <- FindPath(Gf, s, t)
 while P is not null do:
 b <- min capacity of any edge in P
 Augment(Gf, f, P, b)
 P <- FindPath(Gf, s, t)
 endwhile
 return f

on
residual graph

aflow
~

BES

4.update flow, resid
graph

Augment Procedure
 Augment(Gf, f, P, b):
 for each edge (u, v) in P
 if (u, v) is forward edge then
 f(u, v) <- f(u, v) + b
 c(u, v) <- c(u, v) - b
 c(v, u) <- c(v, u) + b
 else
 f(v, u) <- f(v, u) - b
 c(v, u) <- c(v, u) + b
 c(u, v) <- c(u, v) - b
i

Running Time
Assume:

1. all capacities are integers
2. sum of capacites of edges out of

Observe:

1. How long to "nd augmenting path ?

2. How long to run Augment?

3. How many iteraions of "nd/augment?

Conclude: Overall running time?

C = s

P

n = f nocks
m:If edges

W

0(m)

8 (m) Cor 0(ul)
t

1 be eachiter increasea2 I T

am S-
⑧
-

0(Cm) I
3

Optimality of Flow?
Question. How do we know this !ow is optimal?

3
Fo↳

I

it-I
D 13

Cuts
De!nition. An - cut is a partition of vertices into
two disjoint sets with in and in .

The capacity of , denoted is the sum of the
capacities of the edges out of .

s t (A, B)
s A t B

(A, B) cap(A, B)
A

Cut Example

Of
A : 33,1,3,53 B:92,4, t3

CapCA,B) E2+1

Correctness of Ford-Fulkerson
Idea. Relate values of !ows to capacities of cuts:

max !ow = min cut

Outline:

for any cut , net !ow across cut = value of !ow

 max !ow min cut

if has no augmenting path in residual graph, then
there is a cut with net !ow = value of cut

 value of = capacity of cut

 min cut

Together these imply Ford-Fulkerson produces max !ow

(A, B)
⟹ ≤

f

⟹ f
⟹ val(f) = cap(A, B) ≥

*

>
-

Max Flow/Min Cut Example

Claim 1
For any - cut and !ow ,

 !ow out of

 !ow into

Consequence. For all cuts ,

s t (A, B) f val(f) = (A) − (A)f out f in

(A) =f out A
(A) =f in A

(A, B) val(f) ≤ cap(A, B)

-

To
m

-

Claim 1 Illustration

P
O
2+3=P-=B

I in

Claim 2
Suppose does not have an augmenting path in the
auxiliary graph.

 nodes reachable from in auxiliary graph

 nodes not reachable

Then

f

=A∗ s
=B∗

val(f) = cap(,)A∗ B⋆

Claim 2 Illustration

B
O-o

↳
W
↳ cut

A *

Correctness Follows
Consider !ow found by Ford-Fulkerson.

1. By claim 1, no !ow can have value larger than any cut
capacity

2. By claim 2,

These imply:

1. is a maximum !ow

2. is a minimum cut

f

val(f) = cap(A, B)

f
(A, B)

Conclusion
 a weighted, directed graph with minimum cut

capacity .

Ford-Fulkerson "nds maximum !ow in time .

can be modi"ed to "nd minimum cut as well

G = (V , E)
C

O(Cm)

Next Time
1. Midterm on Wednesday
2. Stable Matching + Will’s research on Friday
3. Reductions and NP completeness a#er break

