Lecture 29: Network Flow II

COSC 311 Algorithms, Fall 2022

L.ast Time
Network Flow

A new interpretation of directed graphs:

e network of (directional) pipes

e weights are capacities
» how much fluid can flow through piper per time

e designated source node s
» all edges directed away from s

e designated sink or destination node t
» all edges directed towards ¢

Question. How much fluid be routed from s to ¢ per unit
time?

\ <0 1
> 2
Flows, Formally 0_7‘\<o\%‘3© 70

Setup.

G = (V,E) adirected graph, s, t source and sink

o c(u,v) is capacity of edge (u,v) ((o) = \g‘iﬁ ‘::: SSUS i

Flows. An s-t flow f is a function f : E — R" satistying: ?tsﬂ\/vﬂ-
1. capacity constraints: for each edge e, f_(g) < c(e)

2. conservation: for every VC{):CX v # s,t, flow into v = flow

out of v Mowd 1K
The value of the flow fisval(f) =), f(s, V)

ook ol 'c(ow
\aa\f*\x Sound

Flow Example

2
r"@/tz
3

BEAR

Z-
1,4 2,t 3,4 4,t
ol 2 | ||

5

o)

, 3

>,

Z

2

Max Flow Problem

Input.

e weighted directed graph G = (V, E)
» weights = edge capacities > 0

e source s, sink ¢

» all edges oriented out of s
= all edges oriented into ¢

Output.

e flow f of maximum value

e val(f) = ¥, f(s,v)

A Simple Greedy Strategy
Repeat until done:

1. find an “unsaturated” path P from s to ¢
2. find minimum (remaining) capacity /b_ along P
3. route b units of flow along P

Greedy Approach Example

(

\]Q\&L) 5

Choosing Different First Path

Greedy Issue
Flow along P may block other viable paths

Question. How to fix this?

ccx? LCap)

Augmenting Paths s:(ws
Idea. Add “undo” feature for each edge

e if f routes f(u,v) < c(u, v) flow from u to v, add reverse
edge (v, u) with capacity c(v,u) = f(u,v)

e using (v, u) corresponds to “pushing back” flow from
(1, v)

e if an alternate route for this flow can be found, then
more flow can be routed through u

Pushing Back Example

The Residual Graph

e G = (V, E) original graph
e faflowon G

Residual graph G = (Vy, Ef)

e vertex set Vy =V

e for each (u,v) € E, add (v, u) to Ey
= (u,V) 1s forward edge

= (v, u) is backward edge
e in Gy capacity of (u, v) is:

(u,v) — f (u,Av! if (u,v) € E (forward edge)
. M it (v, u) € E (backward edge)

Residual Graph Example

Ford-Fulkerson Algorithr{}
Very high level 069 %¢$P

O
1. Initialize residual gragl;‘, flow J/
2. While there is a path from s to ¢ in residual graph do:
e find path P from s to ¢
» ignore edges with capacity O

e b < minimum capacity along P
e augment flow f by b along P

e update residual graph
3. return f

Questions

How do we...

1. find a path P from s to #?

2. update tlow f?

3. update residual graph Gy’

Example

PON

e s,1/s,5/1,3 1,4 2,t3,4 4,t 5,3|5,2
f(e) 1 2 1 2 1 1 2

PON

e s,1/s,5/1,3 1,4 2,t3,4 4,t 5,3|5,2
f(e) 1 2 1 2 1 1 2

Formalizing Ford-Fulkerson

MaxFlow (G, s, t):
Gf <- G
f <- zero flow
P <- FindPath(Gf, s, t)

while P is not null do:

b <- min capacity of any edge in P
Augment (Gf, £, P, Db)
P <- FindPath(Gf, s, t)

endwhile

return £

Augment Procedure

Augment (Gf, £, P, b):

for each edge (u, v) in P

if (u, v) is forward edge then
f(u, f(u, v) + b
c(u, c(u, v) - b
c(v, c(v, o)
else
f(v, u
c(v, u

c(u,

Running Time
Assume:

1. all capacities are integers
2. C = sum of capacites of edges out of s

Observe:

1. How long to find augmenting path P?
2. How long to run Augment?
3. How many iteraions of find/augment?

Conclude: Overall running time?

Optimality of Flow?

Question. How do we know this flow is optimal?

L T
IS
3\@/ Mz.

2.t 3,4 4,t /5,3 5,2
f(e) | 2 3 2 2 1 23 1 2

Next Time

Ford-Fulkerson Correctness:

e Maximum Flow = Minimum Cut

