
Lecture 29: Network Flow II
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Last Time
Network Flow

A new interpretation of directed graphs:

network of (directional) pipes
weights are capacities

how much !uid can !ow through piper per time
designated source node 

all edges directed away from 

designated sink or destination node 

all edges directed towards 

Question. How much !uid be routed from  to  per unit
time?
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Flows, Formally
Setup.

 a directed graph,  source and sink

 is capacity of edge 

Flows. An s-t !ow  is a function  satisfying:

1. capacity constraints: for each edge , 

2. conservation: for every vertex , !ow into  !ow
out of :

The value of the !ow  is 

G = (V , E) s, t
c(u, v) (u, v)

f f : E → R+

e f (e) ≤ c(e)
v ≠ s, t v =

v
f (x, v) = f (v, y)∑x→v ∑v→y

f val(f ) = f (s, v)∑s→v
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Flow Example
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Max Flow Problem
Input.

weighted directed graph 

weights = edge capacities 

source , sink 

all edges oriented out of 

all edges oriented into 

Output.

!ow  of maximum value

G = (V , E)
> 0
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A Simple Greedy Strategy
Repeat until done:

1. "nd an “unsaturated” path  from  to 

2. "nd minimum (remaining) capacity  along 

3. route  units of !ow along 
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Greedy Approach Example
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Choosing Di#erent First Path
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Greedy Issue
Flow along  may block other viable paths

Question. How to "x this?
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Augmenting Paths
Idea. Add “undo” feature for each edge

if  routes  !ow from  to , add reverse
edge  with capacity 

using  corresponds to “pushing back” !ow from 

if an alternate route for this !ow can be found, then
more !ow can be routed through 

f f (u, v) ≤ c(u, v) u v
(v, u) c(v, u) = f (u, v)
(v, u)

(u, v)
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Pushing Back Example
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The Residual Graph
 original graph

 a !ow on 

Residual graph 

vertex set 

for each , add  to 

 is forward edge

 is backward edge

in  capacity of  is:

 if  (forward edge)

 if  (backward edge)

G = (V , E)
f G

= ( , )Gf Vf Ef

= VVf
(u, v) ∈ E (v, u) Ef

(u, v)
(v, u)
Gf (u, v)
c(u, v) − f (u, v) (u, v) ∈ E
f (v, u) (v, u) ∈ E
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Residual Graph Example
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Ford-Fulkerson Algorithm
Very high level

1. Initialize residual graph, !ow 

2. While there is a path from  to  in residual graph do:

"nd path  from  to 

ignore edges with capacity 

 minimum capacity along 

augment !ow  by  along 
update residual graph

3. return 
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Questions
How do we…

1. "nd a path  from  to ?

2. update !ow ?

3. update residual graph ?
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Example
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Formalizing Ford-Fulkerson
  MaxFlow(G, s, t):
    Gf <- G
    f <- zero flow
    P <- FindPath(Gf, s, t)
    while P is not null do:
      b <- min capacity of any edge in P
      Augment(Gf, f, P, b)
      P <- FindPath(Gf, s, t)
    endwhile
    return f



Augment Procedure
  Augment(Gf, f, P, b):
    for each edge (u, v) in P
      if (u, v) is forward edge then
        f(u, v) <- f(u, v) + b
        c(u, v) <- c(u, v) - b
        c(v, u) <- c(v, u) + b
      else
        f(v, u) <- f(v, u) - b
        c(v, u) <- c(v, u) + b
        c(u, v) <- c(u, v) - b



Running Time
Assume:

1. all capacities are integers
2.  sum of capacites of edges out of 

Observe:

1. How long to "nd augmenting path ?

2. How long to run Augment?

3. How many iteraions of "nd/augment?

Conclude: Overall running time?

C = s
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Optimality of Flow?
Question. How do we know this !ow is optimal?
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Next Time
Ford-Fulkerson Correctness:

Maximum Flow = Minimum Cut


