
Lecture 29: Network Flow II

COSC 311 Algorithms, Fall 2022

Last Time
Network Flow

A new interpretation of directed graphs:

network of (directional) pipes
weights are capacities

how much !uid can !ow through piper per time
designated source node

all edges directed away from

designated sink or destination node

all edges directed towards

Question. How much !uid be routed from to per unit
time?

s
s

t
t

s t

Flows, Formally
Setup.

 a directed graph, source and sink

 is capacity of edge

Flows. An s-t !ow is a function satisfying:

1. capacity constraints: for each edge ,

2. conservation: for every vertex , !ow into !ow
out of :

The value of the !ow is

G = (V , E) s, t
c(u, v) (u, v)

f f : E → R+

e f (e) ≤ c(e)
v ≠ s, t v =

v
f (x, v) = f (v, y)∑x→v ∑v→y

f val(f) = f (s, v)∑s→v

TO I

2 -- 2
O-O too-o

&
-

-

fle): how muchasper
File

-

flow into v

*T flow out of v

huntof flow

leaving source

Flow Example

s

1

3

5
2

4

t
3

4

3

3

1

2
4

2

1

s,1 s,5 1,3 1,4 2,t 3,4 4,t 5,3 5,2e

f(e)

3 : I
A
L I 2+I 3
~

I
3 2 2

2

2 1 2 I I 2O o

Max Flow Problem
Input.

weighted directed graph

weights = edge capacities

source , sink

all edges oriented out of

all edges oriented into

Output.

!ow of maximum value

G = (V , E)
> 0

s t
s

t

f
val(f) = f (s, v)∑s→v

A Simple Greedy Strategy
Repeat until done:

1. "nd an “unsaturated” path from to

2. "nd minimum (remaining) capacity along

3. route units of !ow along

P s t
b P

b P
-

Greedy Approach Example

value
= 5 I

↳!
2

b/c all
source edges saturated

Choosing Di#erent First Path

O.⑧
o Y

Greedy Issue
Flow along may block other viable paths

Question. How to "x this?

P

Augmenting Paths
Idea. Add “undo” feature for each edge

if routes !ow from to , add reverse
edge with capacity

using corresponds to “pushing back” !ow from

if an alternate route for this !ow can be found, then
more !ow can be routed through

f f (u, v) ≤ c(u, v) u v
(v, u) c(v, u) = f (u, v)
(v, u)

(u, v)

u

· -
cap= f(un)I<

④ W
-
-Lu,v)

Pushing Back Example

Eye

The Residual Graph
 original graph

 a !ow on

Residual graph

vertex set

for each , add to

 is forward edge

 is backward edge

in capacity of is:

 if (forward edge)

 if (backward edge)

G = (V , E)
f G

= (,)Gf Vf Ef

= VVf
(u, v) ∈ E (v, u) Ef

(u, v)
(v, u)
Gf (u, v)
c(u, v) − f (u, v) (u, v) ∈ E
f (v, u) (v, u) ∈ E

-

-

-

-ching
flow cross MU,VIcapacity if flusu)
units of

Residual Graph Example

I
O

I
&↑ I

31) IRO

· I

=

2/ "/'

Ford-Fulkerson Algorithm
Very high level

1. Initialize residual graph, !ow

2. While there is a path from to in residual graph do:

"nd path from to

ignore edges with capacity

 minimum capacity along

augment !ow by along
update residual graph

3. return

f
s t

P s t
0

b ← P
f b P

f

-orig
graph

o

Questions
How do we…

1. "nd a path from to ?

2. update !ow ?

3. update residual graph ?

P s t

f

Gf

Example

s

1

3

5 2

4

t

3

4

3

3

1

2

4

2

1

s,1 s,5 1,3 1,4 2,t 3,4 4,t 5,3 5,2e

f(e) 1 2 1 2 1 1 2

s

1

3

5 2

4

t

3

4

3

3

1

2

4

2

1

s,1 s,5 1,3 1,4 2,t 3,4 4,t 5,3 5,2e

f(e) 1 2 1 2 1 1 2

Formalizing Ford-Fulkerson
 MaxFlow(G, s, t):
 Gf <- G
 f <- zero flow
 P <- FindPath(Gf, s, t)
 while P is not null do:
 b <- min capacity of any edge in P
 Augment(Gf, f, P, b)
 P <- FindPath(Gf, s, t)
 endwhile
 return f

Augment Procedure
 Augment(Gf, f, P, b):
 for each edge (u, v) in P
 if (u, v) is forward edge then
 f(u, v) <- f(u, v) + b
 c(u, v) <- c(u, v) - b
 c(v, u) <- c(v, u) + b
 else
 f(v, u) <- f(v, u) - b
 c(v, u) <- c(v, u) + b
 c(u, v) <- c(u, v) - b

Running Time
Assume:

1. all capacities are integers
2. sum of capacites of edges out of

Observe:

1. How long to "nd augmenting path ?

2. How long to run Augment?

3. How many iteraions of "nd/augment?

Conclude: Overall running time?

C = s

P

Optimality of Flow?
Question. How do we know this !ow is optimal?

2

3
I

I

I

3 2

2

13

Next Time
Ford-Fulkerson Correctness:

Maximum Flow = Minimum Cut

