
Lecture 28: Network Flow

COSC 311 Algorithms, Fall 2022

Last Time
Bellman-Ford Algorithm for SSSP

De!nition. For each de!ne
length of shortest path from to consisting of hops.

j = 0, 1, … , n − 1 (u, v) =dj
u v ≤ j

directed, weighted graph
a negative edge weights
-

allowed, not neg

~

cycles

Last Time
Bellman-Ford Algorithm for SSSP

De!nition. For each de!ne
length of shortest path from to consisting of hops.

j = 0, 1, … , n − 1 (u, v) =dj
u v ≤ j

Observations.

1. If has no negative weight cycles then

2. For all ,

G
d(u, v) = (u, v)dn−1

j
(u, x) = min((u, x), (u, v) + w(v, x))dj dj−1 minv→x dj−1

m

S - I
- ---

Last Time
Bellman-Ford Algorithm for SSSP

De!nition. For each de!ne
length of shortest path from to consisting of hops.

j = 0, 1, … , n − 1 (u, v) =dj
u v ≤ j

Observations.

1. If has no negative weight cycles then

2. For all ,

G
d(u, v) = (u, v)dn−1

j
(u, x) = min((u, x), (u, v) + w(v, x))dj dj−1 minv→x dj−1

Idea. Use second observation to compute
 for all .(u, x), (u, x), … , (u, x)d0 d1 dn−1 x

-

1

4

2 3

5

4

2

-2

21

2

1

1 2 3 4 5

0

1

2

3

4

vertex id

ho
p

di
st

.
j

0

"O

g

1

4

2 3

5

4

2

-2

21

2

1

1 2 3 4 5

0

1

2

3

4

vertex id

ho
p

di
st

.
j

0

0

O
-

S

·"I, 8 f

1

4

2 3

5

4

2

-2

21

2

1

1 2 3 4 5

0

1

2

3

4

vertex id

ho
p

di
st

.
j

0

0 4

-O
~

o j

1

4

2 3

5

4

2

-2

21

2

1

1 2 3 4 5

0

1

2

3

4

vertex id

ho
p

di
st

.
j

0

0 4 . 2

O
I

O

1

4

2 3

5

4

2

-2

21

2

1

1 2 3 4 5

0

1

2

3

4

vertex id

ho
p

di
st

.
j

0

0 4 . 2 ⑧

1

4

2 3

5

4

2

-2

21

2

1

1 2 3 4 5

0

1

2

3

4

vertex id

ho
p

di
st

.
j

0

0 4 . 2 .

~

I

1

4

2 3

5

4

2

-2

21

2

1

1 2 3 4 5

0

1

2

3

4

vertex id

ho
p

di
st

.
j

0

0 4 . 2 .

0T ↳in

1

4

2 3

5

4

2

-2

21

2

1

1 2 3 4 5

0

1

2

3

4

vertex id

ho
p

di
st

.
j

0

0 4 . 2 .

0 3 6 2 0

1

4

2 3

5

4

2

-2

21

2

1

1 2 3 4 5

0

1

2

3

4

vertex id

ho
p

di
st

.
j

0

0 4 . 2 .

0 3 6 2 0

0 2 5 2 0

1

4

2 3

5

4

2

-2

21

2

1

1 2 3 4 5

0

1

2

3

4

vertex id

ho
p

di
st

.
j

0

0 4 . 2 .

0 3 6 2 0

0 2 5 2 0

0 2 4 2 0

E

Bellman-Ford Algorithm

Running time is if has vertices and edges.

 Bellman-Ford(V, E, w, u)
 d <- 2d array [0..n-1, 1..n]
 for v = 1 to n do d[0, v] <- infinity
 d[0, u] <- 0
 for j = 1 to n-1 do
 for each vertex v in V set d[j, v] <- d[j-1,v]
 for each vertex v in V
 for each neighbor x of v
 d[j, x] <- Min(d[j, x], d[j-1, v] + w[v, x])
 return d[n-1]

O(mn) G n m

n+)*Omi
-

Olmn)

Correctness
Claim. For all and for all vertices ,

 stores length of shortest path from to with or
fewer hops. I.e.,

Proof. Induction on .

Base case, .

j = 0, 1, … , n − 1 v
d[j, v] u v j

d[j, v] = (v)dj

j
j = 0

val in array

f
*Dt length of shortest

path from a tow

w) at most
-

O u = v S hops.

$20,3 = Sof otherwise

Inductive Step,
suppose for all

consider shortest path of hops from to

let be penultimate vertex in

then

by inductive hypothesis,

therefore in iteration , get

also have (why?)

so

j − 1 ⟹ j
d[j − 1, v] = (v)dj−1 v

P ≤ j u v
x P

(v) = (x) + w(x, v)dj dj−1
(x) = d[j − 1, x]dj−1

j
d[j, v] ≤ d[j − 1, x] + w(x, v) = (x) + w(x, v) = (v)dj−1 dj

d[j, v] ≥ (v)dj
d[j, v] = (v)dj

-

--

-> -
D
-
-

----- ~i
↑
- XWix,2)

④-⑳
afileNo1x is

correct

Conclusion
If has no negative weight cycles, then Bellman-Ford
solves single source shortest paths in time.

G
O(mn)

Dijkstra vs Bellman-Ford?
Running times:

Dijkstra:

Bellman-Ford:

Why pick Bellman-Ford over Dijkstra?

O(m log n)
O(mn)
* logn

K I

D

if G has negative
weights!

Dijkstra vs Bellman-Ford?
Running times:

Dijkstra:

Bellman-Ford:

Why pick Bellman-Ford over Dijkstra?

O(m log n)
O(mn)

Why might Bellman-Ford be preferable even if graph
has no negative weight edges?

Bellman-Ford Again
 Bellman-Ford(V, E, w, u)
 d <- 2d array [0..n-1, 1..n]
 for v = 1 to n do d[0, v] <- infinity
 d[0, u] <- 0
 for j = 1 to n-1 do
 for each vertex v in V set d[j, v] <- d[j-1,v]
 for each vertex v in V
 for each neighbor x of v
 d[j, x] <- Min(d[j, x], d[j-1, v] + w[v, x])
 return d[n-1]
--

"Distributed Algorithm"

Cold War

Soviet Rail Network, ca. 1955

⑧
O

&O
⑧

o

Networks to Graphs
Modeling the network:

nodes represent railway junctions
edges represent rail lines
weights represent capacities of lines

capacity tonnage that can cross line per unit time
proportional to cost of disrupting line

=

Networks to Graphs
Modeling the network:

nodes represent railway junctions
edges represent rail lines
weights represent capacities of lines

capacity tonnage that can cross line per unit time
proportional to cost of disrupting line

=

Question 1. How much material can the USSR transport to
Western Europe per unit time?

Question 2. What is the cheapest way to disrupt "ow of all
material?

Harris & Ross, 1955 USAF, declassi!ed 1999
-

Network Flow
A new interpretation of directed graphs:

network of (directional) pipes
weights are capacities

how much "uid can "ow through piper per time
designated source node

all edges directed away from

designated sink or destination node

all edges directed towards

Question. How much "uid be routed from to per unit
time?

s
s

t
t

s t

S

Example

O O

Flows, Formally
Setup.

 a directed graph, source and sink

 is capacity of edge

Flows. An s-t "ow is a function satisfying:

1. capacity constraints: for each edge ,

2. conservation: for every vertex , "ow into "ow
out of :

The value of the "ow is

G = (V , E) s, t
c(u, v) (u, v)

f f : E → R+

e f (e) ≤ c(e)
v ≠ s, t v =

v
f (x, v) = f (v, y)∑x→v ∑v→y

f val(f) = f (s, v)∑s→v

fle): amount
of flow

crossing e

-

⑧ O
-

Flow Example 1

s

1

3

5
2

4

t
3

4

3

3

1

2
4

2

1

s,1 s,5 1,3 1,4 2,t 3,4 4,t 5,3 5,2e

f(e)

value
3

(

11 1 2 I 1 2

Flow Example 2

s

1

3

5
2

4

t
3

4

3

3

1

2
4

2

1

s,1 s,5 1,3 1,4 2,t 3,4 4,t 5,3 5,2e

f(e)

(
5

2 3 2 I I B 1 2
-m

Max Flow Problem
Input.

weighted directed graph

weights = edge capacities

source , sink

all edges oriented out of

all edges oriented into

Output.

"ow of maximum value

G = (V , E)
> 0

s t
s

t

f
val(f) = f (s, v)∑s→v

A Simple Greedy Strategy
Repeat until done:

1. !nd an “unsaturated” path from to

2. !nd minimum (remaining) capacity along

3. route units of "ow along

P s t
b P

b P

Greedy Approach Example

Choosing Di#erent First Path

Greedy Issue
Flow along may block other viable paths

Question. How to !x this?

P

Augmenting Paths
Idea. Add “undo” feature for each edge

if routes "ow from to , add reverse
edge with capacity

using corresponds to “pushing back” "ow from

if an alternate route for this "ow can be found, then
more "ow can be routed through

f f (u, v) ≤ c(u, v) u v
(v, u) c(v, u) = f (u, v)
(v, u)

(u, v)

u

Pushing Back Example

The Residual Graph
 original graph

 a "ow on

Residual graph

vertex set

for each , add to

 is forward edge

 is backward edge

in capacity of is:

 if (forward edge)

 if (backward edge)

G = (V , E)
f G

= (,)Gf Vf Ef

= VVf
(u, v) ∈ E (v, u) Ef

(u, v)
(v, u)
Gf (u, v)
c(u, v) − f (u, v) (u, v) ∈ E
f (v, u) (v, u) ∈ E

Residual Graph Example

Ford-Fulkerson Algorithm
Very high level

1. Initialize residual graph, "ow

2. While there is a path from to in residual graph do:

!nd path from to

ignore edges with capacity

 minimum capacity along

augment "ow by along
update residual graph

3. return

f
s t

P s t
0

b ← P
f b P

f

Question
We’ve found a path with minimum capacity !

Question. How do we…

1. update "ow ?

2. update residual graph ?

P b > 0

f
Gf

Example

s

1

3

5
2

4

t
3

4

3

3

1

2

4

2

1

s,1 s,5 1,3 1,4 2,t 3,4 4,t 5,3 5,2e

f(e)

2

I
of

1 To
I

I ↳
2 I

7 I

N 2 2 P p 2

Formalizing Ford-Fulkerson
 MaxFlow(G, s, t):
 Gf <- G
 f <- zero flow
 P <- FindPath(Gf, s, t)
 while P is not null do:
 b <- min capacity of any edge in P
 Augment(Gf, f, P, b)
 P <- FindPath(Gf, s, t)
 endwhile
 return f

Augment Procedure
 Augment(Gf, f, P, b):
 for each edge (u, v) in P
 if (u, v) is forward edge then
 f(u, v) <- f(u, v) + b
 c(u, v) <- c(u, v) - b
 c(v, u) <- c(v, u) + b
 else
 f(v, u) <- f(v, u) - b
 c(v, u) <- c(v, u) + b
 c(u, v) <- c(u, v) - b

Running Time
Assume:

1. all capacities are integers
2. sum of capacites of edges out of

Observe:

1. How long to !nd augmenting path ?

2. How long to run Augment?

3. How many iteraions of !nd/augment?

Conclude: Overall running time?

C = s

P

Next Time
Ford-Fulkerson Correctness!

