
Lecture 24: Weighted
Knapsack

COSC 311 Algorithms, Fall 2022

Ball. E

Upcoming
Week 09: !nish dynamic programming
Week 10: network "ow & applications
Week 11: midterm 2
Weeks 12, 13: NP completeness

Overview
1. Finishing Weighted Interval Scheduling
2. The Knapsack Problem

Weighted Interval Scheduling
Input:

1. A set of intervals

2. For each interval , a weight

e.g., weight = pro!t from serving request

Output. A collection of intervals from that is

1. feasible no two intervals overlap
2. maximum weight choice maximizes sum of for

chosen

Note: equivalent to (unweighted) interval scheduling when
all weights are the same

R n
= [,], = [,], … , = [,]r1 s1 t1 r2 s2 t2 rn sn tn

r ∈ R w(r) > 0
r

R

w(r)
r

-HH
↳-
I+H

-m

-

Example w/ Predecessors

i:DoInis
↳
Jo
I 3 I

HiToTo"T=H
I 4 10

O I I 3 4 5 6 F o 9 IO

P:
O 0 0 0 1 4 3 4 6 b 7

A Recursive Solution
 MaxWeightSchedule(w, p, n):
 if n = 0 then return 0
 opt-n <- w[n] + MaxWeightSchedule(w, p, p[n])
 opt-no-n <- MaxWeightSchedule(w, p, n-1)
 return Max(opt-n, opt-no-n)

HHF

-> running time

-2") weights necessors. Essex
greceI means I

If last interval
considered

F
base case

⑧
O

opt sol'n does not contain nVis the opt value is optral for I...nt

it opt soin contains n, then
value

is wInT + Opt Value for I.. PINT

Recursion to Iteration
Idea. Store array max:

max[i] is maximum weight of schedule consisting of
intervals

Question. How to initialize/update max values?

, , … ,r1 r2 ri
-

Maxio] 2 O (no requesHe
served I

computed max [0.. i-17

MaxIcT x Max(maxti-13,
~(i) + max[p[iTT)

g
is predecessor

Iterative Solution
 IMaxWeightSchedule(w, p)
 max <- new array of size n+1
 max[0] <- 0
 for i = 1 up to n do
 max[i] <- Max(w[i] + max[p[i]], max[i-1])
 endfor
 return max[n]

max w/

-> I
included

* -O*wi
*

->max excluded

O(n).

Iterative Solution
 IMaxWeightSchedule(w, p)
 max <- new array of size n+1
 max[0] <- 0
 for i = 1 up to n do
 max[i] <- Max(w[i] + max[p[i]], max[i-1])
 endfor
 return max[n]

Correctness:

same argument as recursive solution

Running Time?

Overall Running Time?
Steps: (assume intervals)

1. Sort intervals by end time

2. Compute array p

3. Run IMaxWeightSchedule(w, p)

Total?

n

On log n) (merga-sort)
Since array sorted by end time

·

Use binary search for each interval
S =Start

· O(n) find largest iIw) ti "S
Fire

Oculog n). On log n)

Exercise
Update IMaxWeightSchedule to return the actual schedule
of maximum weight, not just the weight itself.

The Knapsack Problem

Knapsack Motivation
In weighted interval scheduling each request had:

start time
end time
value

Goal: to service set of non-overlapping requests to
maximize total value

Knapsack Motivation
In weighted interval scheduling each request had:

start time
end time
value

Goal: to service set of non-overlapping requests to
maximize total value

Relaxation. Requests have

duration
value

Each request can be scheduled at any time ≤ B

Knapsack Problem
Input:

1. A set of requests, each having

duration (weight)

value

2. Total time (weight) budget

Output: A set of requests to service with

1. sum of durations of requests in is at most
2. sum of values of requests is maximized

R n
br

vr
B

S
S B (feasibility

coptimality)

Knapsack Problem
Input:

1. A set of requests, each having

duration (weight)

value

2. Total time (weight) budget

Output: A set of requests to service with

1. sum of durations of requests in is at most
2. sum of values of requests is maximized

R n
br

vr
B

S
S B

Constrained Optimization Problem

maximize subject to ∑r∈S vr ≤ B∑r∈S br

traint
cons

⑧ ⑧
objective

Example Budget B = 8

Request Duration value

~ "I

· ⑱88 9
2 -

5 L
4 S
!8-o-9

Recurrence Relation?
Previous technique. Express relationship between optimal
solutions that

1. service the !nal request

2. do not service !nal request

Question. How can we express this relationship for the
knapsack problem?

rn
rn

2
-3 B total budget
tel

-
B-bn remaining

time budget
- i remaining budget

A Recurrence Relation
Subtlety. Must keep track of remaining budget

if is not serviced, remaining budget is

if is serviced, remaining budget is

rn B
rn B − bn

~

-

A Recurrence Relation
Subtlety. Must keep track of remaining budget

if is not serviced, remaining budget is

if is serviced, remaining budget is

rn B
rn B − bn

De!nition. For , is optimal value of
set of requests from with budget .

Question. Recursion relation for depending on
whether or not we include request ?

j = 0, 1, … , n opt(j, C)
1, 2, … , j C

opt(n, B)
rn

request

- remaining
budget

-
a a

-W
-
-

I

opt (n,B) < Max(opt(21,B,
Un+Opt(E),Btn)

Computing Optimal Values
Assume. All durations are integers at most .

we will revisit this assumption later

Compute. To compute :

Generate a two dimensional array max where max[j, C]
stores the value

Questions.

1. How to initialize max?
2. How to update max?

bi B

opt(n, B)

opt(j, C)

-

reg
index

I
-

N
budget

Example

1
b[i]
v[i]

2 3 4i

Requests:

3
4
2
3
5
5
4
6

B=8

4

0 1 2 3 4 5 6 7 8

3

2

1

0

Budget

Re
q.

 I
nd

ex

Max value

-
-

for servicingreguesare
of 4

8000

I O
·

w) time budget
O
O

& I
↑ -a ↑

⑧

1
b[i]
v[i]

2 3 4i

Requests:

3
4
2
3
5
5
4
6

B=8

4

0

0 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8

3

2

1

0

Budget

Re
q.

 I
nd

ex

8O O L4444 4

1
b[i]
v[i]

2 3 4i

Requests:

3
4
2
3
5
5
4
6

B=8

4

0

0

0

0

0

0

0 0 0 0 0 0 0

1 2 3 4 5 6 7 8

3

2

1

0

Budget

Re
q.

 I
nd

ex

1
b[i]
v[i]

2 3 4i

Requests:

3
4
2
3
5
5
4
6

B=8

4

0

0

0

0

0

0

0

4

0 0 0 0 0 0

1 2 3 4 5 6 7 8

3

2

1

0

Budget

Re
q.

 I
nd

ex

1
b[i]
v[i]

2 3 4i

Requests:

3
4
2
3
5
5
4
6

B=8

4

0

0

0

0

0

0

0

4

0

4

0

4

0

4

0

4

0

4

0

1 2 3 4 5 6 7 8

3

2

1

0

Budget

Re
q.

 I
nd

ex

1
b[i]
v[i]

2 3 4i

Requests:

3
4
2
3
5
5
4
6

B=8

4

0

0

0

0

0

0

0

0

0

4

0

4

0

4

0

4

0

4

0

4

0

1 2 3 4 5 6 7 8

3

2

1

0

Budget

Re
q.

 I
nd

ex

o

1
b[i]
v[i]

2 3 4i

Requests:

3
4
2
3
5
5
4
6

B=8

4

0

0

0

0

0

0

0

2

0

0

4

0

4

0

4

0

4

0

4

0

4

0

1 2 3 4 5 6 7 8

3

2

1

0

Budget

Re
q.

 I
nd

exoil3
&

O

1
b[i]
v[i]

2 3 4i

Requests:

3
4
2
3
5
5
4
6

B=8

4

0

0

0

0

0

0

0

3

0

0

4

4

0

4

4

0

4

0

4

0

4

0

4

0

1 2 3 4 5 6 7 8

3

2

1

0

Budget

Re
q.

 I
nd

ex
7
I

O

O

1
b[i]
v[i]

2 3 4i

Requests:

3
4
2
3
5
5
4
6

B=8

4

0

0

0

0

0

0

0

3

0

0

4

4

0

4

4

0

7

4

0

7

4

0

7

4

0

7

4

0

1 2 3 4 5 6 7 8

3

2

1

0

Budget

Re
q.

 I
nd

ex

1
b[i]
v[i]

2 3 4i

Requests:

3
4
2
3
5
5
4
6

B=8

4

0

0

0

0

0

0

0

0

0

3

0

0

4

4

0

4

4

0

7

4

0

7

4

0

7

4

0

7

4

0

1 2 3 4 5 6 7 8

3

2

1

0

Budget

Re
q.

 I
nd

ex

1
b[i]
v[i]

2 3 4i

Requests:

3
4
2
3
5
5
4
6

B=8

4

0

0

0

0

0

0

0

0

0

3

3

0

0

4

4

4

0

4

4

4

0

7

4

0

7

4

0

7

4

0

7

4

0

1 2 3 4 5 6 7 8

3

2

1

0

Budget

Re
q.

 I
nd

ex

1
b[i]
v[i]

2 3 4i

Requests:

3
4
2
3
5
5
4
6

B=8

4

0

0

0

0

0

0

0

0

0

3

3

0

0

4

4

4

0

4

4

4

0

7

7

4

0

7

7

4

0

7

7

4

0

7

7

4

0

1 2 3 4 5 6 7 8

3

2

1

0

Budget

Re
q.

 I
nd

ex

1
b[i]
v[i]

2 3 4i

Requests:

3
4
2
3
5
5
4
6

B=8

4

0

0

0

0

0

0

0

0

0

0

0

3

3

3

0

0

4

4

4

4

0

4

4

4

0

7

7

4

0

7

7

4

0

7

7

4

0

7

7

4

0

1 2 3 4 5 6 7 8

3

2

1

0

Budget

Re
q.

 I
nd

ex

1
b[i]
v[i]

2 3 4i

Requests:

3
4
2
3
5
5
4
6

B=8

4

0

0

0

0

0

0

0

0

0

0

0

3

3

3

0

0

4

4

4

4

0

6

4

4

4

0

7

7

4

0

7

7

4

0

7

7

4

0

7

7

4

0

1 2 3 4 5 6 7 8

3

2

1

0

Budget

Re
q.

 I
nd

ex

1
b[i]
v[i]

2 3 4i

Requests:

3
4
2
3
5
5
4
6

B=8

4

0

0

0

0

0

0

0

0

0

0

0

3

3

3

0

0

4

4

4

4

0

6

4

4

4

0

7

7

7

4

0

7

7

4

0

7

7

4

0

7

7

4

0

1 2 3 4 5 6 7 8

3

2

1

0

Budget

Re
q.

 I
nd

ex

1
b[i]
v[i]

2 3 4i

Requests:

3
4
2
3
5
5
4
6

B=8

4

0

0

0

0

0

0

0

0

0

0

0

3

3

3

0

0

4

4

4

4

0

6

4

4

4

0

7

7

7

4

0

9

7

7

4

0

7

7

4

0

7

7

4

0

1 2 3 4 5 6 7 8

3

2

1

0

Budget

Re
q.

 I
nd

ex

1
b[i]
v[i]

2 3 4i

Requests:

3
4
2
3
5
5
4
6

B=8

4

0

0

0

0

0

0

0

0

0

0

0

3

3

3

0

0

4

4

4

4

0

6

4

4

4

0

7

7

7

4

0

9

7

7

4

0

10

7

7

4

0

10

7

7

4

0

1 2 3 4 5 6 7 8

3

2

1

0

Budget

Re
q.

 I
nd

ex

↓ "Lo
& 9

Pseudocode
 FindMax(R, n, B):
 max <- new 2d array of dimensions n+1, B+1
 set max[0, C] <- 0 for C = 0 to B
 for j from 1 to n
 (b, v) <- i-th request in R
 for C from 0 to B
 if b <= C then
 max[j, C] <- Max(v + max[j-1, C-b], max[j-1,C])
 else
 max[j, C] <- max[j-1, C]
 return max[n, B]

