Mini Lecture: Running Time
of Merging

COSC 311 Algorithms, Fall 2022

Last Time
Kruskal’s Algorithm for MSTs:

e iterate over all edges in ascending order of weight

e if an edge connects two previously un-connected
components, add it to MST

Kruskal's Algorithm

Kruskal(Vv, E, w):
- ~ o
CF <- collection of components]
initially, each vertex is own component
- F <- empty collection
iterate in order of increasing weight
for each edge e = (u, v) in E

if u and v are in different components then

add (u, v) to F

[merge components containing u and JJ

endif
endfor

return F

Maintaining Components

Associate a leader with each component

e leader is a vertex in the component
e maintain array of leaders

s leader[i] = v means that v is leader of i’s
component

o for each leader v, maintain a (linked) list of elements in
V's component

= list also stores size of the component

[1lustration

Merging Components

To merge components with leaders u and v

1. Choose larger component’s leader to be new leader (u)
2. Iterate over each vertex x in v’s list and

e add x to u’s list
e update leader[x] <- u

therate
QU \i'y“'

Boe eadn

e time per element is O(1) 2\t }

9 S\(‘\‘6—\/(/
\eadsas alrey
W dode

v O a0
e\t Yo

w's LTSt

Running time: O(size of smaller component)

(x Mes N \M\'\LbS, ™ U&%S
Simplistic Analysis

Kruskal(Vv, E, w):
C <- collection of components
initially, each vertex is own component
F <- empty collection
iterate in order of increasing weight
for each edge e = (u, v) in E
if u and v are in different components then
add (u, v) to F

merge components containing u and iB

endif

endfor

return F

h VR Cadons G QSVZ& ol gemallLf

WA Lmv\? - >

=) 60“.“3 CPA’{M" (}Lv:\loq n))

Fewer Merges

Kruskal(Vv, E, w):
C <- collection of components
initially, each vertex is own component
F <- empty collection
iterate in order of increasing weight

for each edge e = (u, v) in E

if u and v_are in |[different components]then

add (u, v) to F .\
merge components containing u and V'J E “_\
endif *%
\AdL>

endfor

return F

Obs: aflec Wmege COvpovints URCILNES

et W cowmpPonan £S
’. ﬁ(’r\&?hﬂ;\;ﬁ} e L cowmpy WO Losdrar yacoe

— (3*\\jf CAJD V\J‘(. VV\1J<14XLS ! ::£> (f}(y{l) {‘.t).

Amortized Cost of Merges

Consider the number of times each element’s leader 1s
updated

Claim. If x is relabeled k£ times, then x’s component has
size at least 2~.

w\,\\/? ‘ old

T % (S (da\odu&, Y's o 1S
Y\o \o«%(‘ oo Prl Campowand
griks wuLrged [

' : K
=) Lo\ WL W wwcdh
1S cdalel > doodoley S
ok XS CLowmp.

-k
-:5 k ‘(L(a\oe\(k%s \o\og S(\bg__ 2'2""2-)
ke

Amortized Cost of Merges

Consider the number of times each element’s leader 1s
updated

Claim. If x is relabeled k£ times, then x’s component has
size at least 2~.

Consequence 1. If x’s component has size £, then x was
relabeled at most log £ times.

L 228 = byl 2l

Amortized Cost of Merges

Consider the number of times each element’s leader 1s
updated

Claim. If x is relabeled k£ times, then x’s component has
size at least 2~.

Consequence 1. If x’s component has size £, then x was
relabeled at most log £ times.

Consequence 2. Running time of all merge operations in
Kruskal is O(n log n)

W Wewsla| feewinates,
oMl weckiws A Cowmp. ol ST W

= eadh Vix clabeled & log n

> celab
=) (9'(“ (.OQ’ "\) Y- L qu—s \L}QL@‘(0) PU(- '\/"‘)(.

Conclusion

Theorem. Kruskal’s algorithm can be implemented to run
in time QO(m log n) in graphs with n vertices and m edges.

e running time dominated by getting edges in ascending

weight order
(medge O0S (M{\\?(fol n (mj “5

Conclusion

Theorem. Kruskal’s algorithm can be implemented to run
in time O(m log n) in graphs with n vertices and m edges.

e running time dominated by getting edges in ascending
weight order

Remark. More eflicient data structures for merging sets
exist

e “Union-find” ADT, “disjoint-set forest” data structure
e time to perform merges is O(na(n))

» a(n) 1s “Iinverse Ackerman function”

» a(n) grows so slowly, it is practically constant

