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Last Time
Kruskal’s Algorithm for MSTs:

iterate over all edges in ascending order of weight
if an edge connects two previously un-connected
components, add it to MST



Kruskal’s Algorithm
  Kruskal(V, E, w):
    C <- collection of components
      initially, each vertex is own component
    F <- empty collection
    # iterate in order of increasing weight
    for each edge e = (u, v) in E 
      if u and v are in different components then
        add (u, v) to F
        merge components containing u and v
      endif
    endfor
    return F
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Maintaining Components
Associate a leader with each component

leader is a vertex in the component
maintain array of leaders

leader[i] = v means that v is leader of i’s
component

for each leader v, maintain a (linked) list of elements in
v’s component

list also stores size of the component
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Merging Components
To merge components with leaders  and 

1. Choose larger component’s leader to be new leader ( )

2. Iterate over each vertex  in ’s list and

add  to ’s list
update leader[x] <- u

Running time: 

time per element is 
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Simplistic Analysis
  Kruskal(V, E, w):
    C <- collection of components
      initially, each vertex is own component
    F <- empty collection
    # iterate in order of increasing weight
    for each edge e = (u, v) in E 
      if u and v are in different components then
        add (u, v) to F
        merge components containing u and v
      endif
    endfor
    return F

G has a vertices, in edges
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Fewer Merges
  Kruskal(V, E, w):
    C <- collection of components
      initially, each vertex is own component
    F <- empty collection
    # iterate in order of increasing weight
    for each edge e = (u, v) in E 
      if u and v are in different components then
        add (u, v) to F
        merge components containing u and v
      endif
    endfor
    return F
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Amortized Cost of Merges
Consider the number of times each element’s leader is
updated

Claim. If  is relabeled  times, then ’s component has
size at least .

x k x
2k

Why? old
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Amortized Cost of Merges
Consider the number of times each element’s leader is
updated

Claim. If  is relabeled  times, then ’s component has
size at least .

x k x
2k

Consequence 1. If ’s component has size , then  was
relabeled at most  times.

x ℓ x
log ℓ
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Amortized Cost of Merges
Consider the number of times each element’s leader is
updated

Claim. If  is relabeled  times, then ’s component has
size at least .

x k x
2k

Consequence 1. If ’s component has size , then  was
relabeled at most  times.

x ℓ x
log ℓ

Consequence 2. Running time of all merge operations in
Kruskal is O(n log n)
When krushal terminates,
all vertices in comp. of size

> each vtx relabeled logn
times /c relabel

> Oculoga) U.t. merges is 0C1) per
Vx.



Conclusion
Theorem. Kruskal’s algorithm can be implemented to run
in time  in graphs with  vertices and  edges.

running time dominated by getting edges in ascending
weight order

O(m log n) n m
---

Emerge ops only take nlogn)



Conclusion
Theorem. Kruskal’s algorithm can be implemented to run
in time  in graphs with  vertices and  edges.

running time dominated by getting edges in ascending
weight order

O(m log n) n m

Remark. More e!cient data structures for merging sets
exist

“Union-"nd” ADT, “disjoint-set forest” data structure
time to perform merges is 

 is “inverse Ackerman function”

 grows so slowly, it is practically constant

O(nα(n))
α(n)
α(n)
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