
Mini Lecture: Running Time
of Merging

COSC 311 Algorithms, Fall 2022

Last Time
Kruskal’s Algorithm for MSTs:

iterate over all edges in ascending order of weight
if an edge connects two previously un-connected
components, add it to MST

Kruskal’s Algorithm
 Kruskal(V, E, w):
 C <- collection of components
 initially, each vertex is own component
 F <- empty collection
 # iterate in order of increasing weight
 for each edge e = (u, v) in E
 if u and v are in different components then
 add (u, v) to F
 merge components containing u and v
 endif
 endfor
 return F

- -
-

L I

⑱

-

I I

Maintaining Components
Associate a leader with each component

leader is a vertex in the component
maintain array of leaders

leader[i] = v means that v is leader of i’s
component

for each leader v, maintain a (linked) list of elements in
v’s component

list also stores size of the component

Illustration

O O&
A

I⑧
*

Leader: sta#ilk : **

Merging Components
To merge components with leaders and

1. Choose larger component’s leader to be new leader ()

2. Iterate over each vertex in ’s list and

add to ’s list
update leader[x] <- u

Running time:

time per element is

u v
u

x v
x u

O(size of smaller component)
O(1)

-

-

iterate

<over list,for each
elf,
a single
leader array
update

· append
elf to

u's list

Simplistic Analysis
 Kruskal(V, E, w):
 C <- collection of components
 initially, each vertex is own component
 F <- empty collection
 # iterate in order of increasing weight
 for each edge e = (u, v) in E
 if u and v are in different components then
 add (u, v) to F
 merge components containing u and v
 endif
 endfor
 return F

G has a vertices, in edges

If
irrations

34
Olsize of smaller
comp.)

= O(n)
=> OCmn) (Prim: 0(mlogn) I

Fewer Merges
 Kruskal(V, E, w):
 C <- collection of components
 initially, each vertex is own component
 F <- empty collection
 # iterate in order of increasing weight
 for each edge e = (u, v) in E
 if u and v are in different components then
 add (u, v) to F
 merge components containing u and v
 endif
 endfor
 return F

runSt I t 1-I
times

Obs: after merge. A components decreases

by 1

·
at start, have a components

· after get to comp,
no further merge

=> only do notmerges! - Olnl rit.

Amortized Cost of Merges
Consider the number of times each element’s leader is
updated

Claim. If is relabeled times, then ’s component has
size at least .

x k x
2k

Why? old

=f x is relabeled, X's "comp is

no larger than the component it

gets merged into

=> each merge in
which i

is relabeled I doubles size

of is comp.

-> le relabelings has sizeL :24

Le

Amortized Cost of Merges
Consider the number of times each element’s leader is
updated

Claim. If is relabeled times, then ’s component has
size at least .

x k x
2k

Consequence 1. If ’s component has size , then was
relabeled at most times.

x ℓ x
log ℓ

12" loge? I

Amortized Cost of Merges
Consider the number of times each element’s leader is
updated

Claim. If is relabeled times, then ’s component has
size at least .

x k x
2k

Consequence 1. If ’s component has size , then was
relabeled at most times.

x ℓ x
log ℓ

Consequence 2. Running time of all merge operations in
Kruskal is O(n log n)
When krushal terminates,
all vertices in comp. of size

> each vtx relabeled logn
times /c relabel

> Oculoga) U.t. merges is 0C1) per
Vx.

Conclusion
Theorem. Kruskal’s algorithm can be implemented to run
in time in graphs with vertices and edges.

running time dominated by getting edges in ascending
weight order

O(m log n) n m

Emerge ops only take nlogn)

Conclusion
Theorem. Kruskal’s algorithm can be implemented to run
in time in graphs with vertices and edges.

running time dominated by getting edges in ascending
weight order

O(m log n) n m

Remark. More e!cient data structures for merging sets
exist

“Union-"nd” ADT, “disjoint-set forest” data structure
time to perform merges is

 is “inverse Ackerman function”

 grows so slowly, it is practically constant

O(nα(n))
α(n)
α(n)

-
