
Lecture 19: Minimum
Spanning Trees, Part 3

COSC 311 Algorithms, Fall 2022
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Announcements
1. Masks still required in class
2. No class on Monday 10/24
3. HW 03, Question 1:

array contains  (not in order)

values represented as  bit numbers
4. HW 03 now due Sunday
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Last Time
Prim’s algorithm for Minimum Spanning Trees:

Grow a tree from an arbitrary seed vertex
Each step, add minimum weight edge out of tree

Cut Claim:

if  an MST,  a cut,  min weight cut edge

then  contains 

Prim correctness follows from cut claim
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MSTs, Another Way
Prim:

Grow tree greedily from a single seed vertex
Maintain a (connected) tree

Edge Centric View:

Maintain a collection of edges (not necessarily a tree)
Add edges to collection to eventually build an MST

Questions:

How to prioritize edges?
How to determine whether or not to include an edge?
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Kruskal’s Algorithm
  Kruskal(V, E, w):
    C <- collection of components
      initially, each vertex is own component
    F <- empty collection
    # iterate in order of increasing weight
    for each edge e = (u, v) in E 
      if u and v are in different components then
        add (u, v) to F
        merge components containing u and v
      endif
    endfor
    return F
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Kruskal Illustration
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Kruskal Correctness I
Claim 1. Every edge added by Kruskal must be in every
MST.

Why?
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Kruskal Correctness I
Claim 1. Every edge added by Kruskal must be in every
MST.

Why?

Suppose  added by Kruskal

Consider the cut  where  is ’s component

 is lightest edge across the cut (why?)

therefore  must be in MST (why?)

e = (u, v)
U, V − U U u
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Kruskal Correctness II
Claim 2. Kruskal produces a spanning tree.

Why?



Kruskal Correctness II
Claim 2. Kruskal produces a spanning tree.

Why?

edges added by Kruskal do not contain cycles (why?)

edges added by Kruskal connect graph (why?)

&ever add edge that
creates a cycle

Only don't include an edge
f encepts are already

connected



Conclusion
Theorem. Kruskal’s algorithm produces an MST.

Next Question. How could we implement Kruskal’s
algorithm e!ciently? What is its running time?



Kruskal’s Algorithm
  Kruskal(V, E, w):
    C <- collection of components
      initially, each vertex is own component
    F <- empty collection
    # iterate in order of increasing weight
    for each edge e = (u, v) in E 
      if u and v are in different components then
        add (u, v) to F
        merge components containing u and v
      endif
    endfor
    return F
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Costly Operations
1. Get edges in order of increasing weight
2. Determine if  and  are in same component
3. Merge two components

u v



Costly Operations
1. Get edges in order of increasing weight
2. Determine if  and  are in same component
3. Merge two components

u v

Question. How to get edges in order of increasing weight?

s eg. Use BES to find all edges,
add to priority quere
↳ repeatedly remove min

to Alt: add edges to array-
and sort by weight I

Q(mlogn) -



Maintaining Components
Idea. For each component, designate a leader

leader is a vertex in its component
maintain an array that stores each vertex’s component’s
leader

leader[i] = v means that v is leader of i’s
component

Question. How to check if vertices i and j are in the same
component? Running time?
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Merging Components
Question. How to merge two components?
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Merging Components E!ciently?
For each leader, maintain list of vertices in its component.

I

1-2O#liteIre 2: 1, 2, 6
* append# ↑ :B,
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Time to merge a w/vi

&(size of smaller component).



Merging Components E!ciently?
For each leader, maintain list of vertices in its component.

To merge components with leaders  and :

1. choose  or  to be leader of merged component
how?

2. if  is new leader

for each vertex  on ’s list

add  to ’s list

set ’s leader to 

Question. Running time?
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Merging Strategy
When merging components with leaders  and , new
leader is leader of larger component

Claim. If  is relabeled  times, then ’s component has
size at least .

u v
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Consequence
Claim. If  is relabeled  times, then ’s component has
size at least .

Consequence 1. If ’s component has size , then  was
relabeled at most  times.
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2k
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Consequence
Claim. If  is relabeled  times, then ’s component has
size at least .

Consequence 1. If ’s component has size , then  was
relabeled at most  times.

x k x
2k

x ℓ x
log ℓ

Consequence 2. Running time of all merge operations in
Kruskal is O(n log n)



Conclusion
Theorem. Kruskal’s algorithm can be implemented to run
in time  in graphs with  vertices and  edges.O(m log n) n m



Conclusion
Theorem. Kruskal’s algorithm can be implemented to run
in time  in graphs with  vertices and  edges.O(m log n) n m
Remark. More e!cient data structures for merging sets
exist

“Union-"nd” ADT, “disjoint-set forest” data structure
time to perform merges is 

 is “inverse Ackerman function”

 grows so slowly, it is practically constant

O(nα(n))
α(n)
α(n)



Next Time
Interval Scheduling (recorded lecture)


