Lecture 16: Dykstra’s
Algorithm

COSC 311 Algorithms, Fall 2022



Overview

1. Recap ot BFS

2. Weighted Graphs

3. Weighted Shortest Paths
4. Dijkstra’s Algorithm



yechnes olba O

Last Time E/ e&%}

Unweighted [STngle-S ortest Paths:

e Given graph G = (V, E) and starting VCI‘tCXEj
e Find for every vertex v, the distance d(u, v)
» d(u,v) = length of shortest path from u to v
» shortest = fewest hops



Last Time

Unweighted Single-Source Shortest Paths:

e Given graph G = (V, E) and starting vertex u
e Find for every vertex v, the distance d(u, v)
» d(u,v) = length of shortest path from u to v
» shortest = fewest hops

Solution: Breadth-first Search (BFS)

e Process vertices in increasing order of distance from u



BFS Pseudocode

BFS(V, E, u):
intialize m <- =1 for all v

* d[u] <- 0

queue.add(u) \Mﬁ \IXOS( \\;)iiict
W W%

while queue is not empty do

Qo

v <- queue.remove ()
for each neighbor w if,z_if—/’//
s~ if d[w] = -1 then
diw] <- d[v] + 1
queue.add(w)

return d

Correctness. Follows from interaction with queue: vertices
added in order of increasing distance from u

e —> distance 1is correct when vertex added



BFS Phases
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*queue.add(u) _
while queue is not empty do lM
% Vv <- queue.remove()
for each neighbor w of v do
] % if d[w] = -1 then . A v@')
% d[w] <- d[v] + 1 .

s dqueue.add(w) | ‘M'(}

return d
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More General Problem

Definition. A weighted graph is a graph G(V, E) where
each edge e € E is additionally assigned a (real valued)

weight w(e).
S
e for now, assume w(e) > 0



More General Problem

Definition. A weighted graph is a graph G(V, E) where
each edge e € E is additionally assigned a (real valued)
weight w(e).

e for now, assume w(e) > 0

Examples.

e weights = distances (not just number of hops)
e weights = cost of connection
e weights = latency of connection




Distance in Weighted Graphs
e G = (V,E) agraph, w weights
---@)vk a path

w(P) = w(ey) + w(ey) + - + w(ey)






Weighted Shortest Paths

Given weights w, define d,, (4, v) to be minimum
(weighted) length of any path P from u to v.



Example
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What is d,,(1, 3)? What about d,,(1, 5)?




Weighted SSSP -

Input.

E\cﬁh' Somfc/(\ Swockest P4

e a weighted Graph & = (V, E), edge weights w

e an initial vertexulc V

e each vertex v € V has associated adjacency list
= list of v's neighbors

= includes weight of edge from v to each neighbor
Output.

e Amapd : V — Rsuch thatd[v] = d,,(u, V) is the graph
distance from u to v

» d[v] = oo indicates no path from u to v
S,



Weighted SSSP

Does BFS compute weighted distances from u?

e must update procedure

e when processing edge (v, x), should update
d[x]<d[v] + w(v, x) rather than setting d[x]«d[v] + 1

Does this work? — ~—




Weighted BFS Example EKecdise” Q\'\':J‘
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cur

queue || 1

divl] ||© |-1f-1]-1]-1|-1]-1]-1]-1




Issue

e BFS processes vertices in order of fewest hops from u

e With weighted graphs, shortest path need not have
fewest hops



BEFS Analysis Takeaway

e BFS succeeds on unweighted graphs because closer
vertices are processed before farther vertices

e Could we get similar behavior for weighted distances?



BEFS Analysis Takeaway

e BFS succeeds on unweighted graphs because closer
vertices are processed before farther vertices

e Could we get similar behavior for weighted distances?

= must ensure: vertices processed in order of weighted
distance from u

= how can we do this?



BEFS Analysis Takeaway

e BFS succeeds on unweighted graphs because closer
vertices are processed before farther vertices

e Could we get similar behavior for weighted distances?

= must ensure: vertices processed in order of weighted
distance from u

= how can we do this?

e How could we efficiently implement a modified
procedure?



Dijkstra’s Algorithm

Idea. Process elements in order of weighted distance from
U

e Maintain set S of nodes whose distances from u 1s
known

e Find elementﬁ - S Fhat 1s closest to u and add it to

S
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gorithm in Detail
=0andd|[v] = o forallv # u

Dijkstra’s

1. Initialize|d[u]

2. Maintain set S of ﬁnalzzed nodes, 1n1t1a11y empt
qu&LS ot
3. Process nodes WhllelS * Vz o: _(:_& ol czed
e find node vin V — § with minimal d[v]
eaddvto S

o for each neighbor x of v
» update d[x]<« min(d[x], d[v] + w(v, x))
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Dijkstra Illustration
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Correctness

1. Initialize d[u]<0 and d[v]«oo forall v # u
2. Maintain set S of finalized nodes, initially empty
3. Process nodes: while S # V
e find node v in V — § with minimal d[v]
e addvto S
e for each neighbor x of v
» update d[x]«< min(d[x], d[v] + w(v, x))

Claim. For every vertex v € §, d[v] stores the correct
(weighted) distance d,,(u, v).



Proof of Claim

Claim. For every vertex v € §, d[v] stores the correct
(weighted) distance d,,(u, v).

Proof. Use induction on size of S. Set k = size of S.

Base case k = 1. Only u is added to S. Set d[u] <0, which is
correct answer.



Inductive Step I

Inductive hypothesis. When S contains k£ elements, d[v] is
correct for all vertices v € §.

Consider next iteration of outer loop:

e x has d[x] = min,c¢(d[v] + w(v, X))



Inductive Step II

Must show: d[x] = d,,(u, x); argue by contradiction

1. suppose d[x] # d,,(u, x)

2. observe: there is a path from u to x of length d[x]

3. = d,(u,x) < d[x]

4. = thereis a path P from u to x of length £ < d[x]
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Shorter Path Illustration
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Inductive Step III

Must show: d[x] = d,,(u, x); argue by contradiction

1. suppose d[x] # d,,(u, x)

2. observe: there is a path from u to x of length d[x]

3. = d,(u,x) < d[x]

4. = thereis a path P from u to x of length £ < d[x]
5. P must leave S at some point y

6

. by definition of x, any path from u to y must be longer
than d[x]

7. — w(P) > d[x], which contradicts 4

Conclusion. d[x] = d,,(u, x), as claimed.



Next Time

1. Implementing Dijkstra’s algorithm
e how do we find x with minimum d|[x] efficiently?

e review heaps/priority queues
2. Minimum spanning tree problem



