
Lecture 16: Dijkstra’s
Algorithm

COSC 311 Algorithms, Fall 2022

Overview
1. Recap of DFS
2. Weighted Graphs
3. Weighted Shortest Paths
4. Dijkstra’s Algorithm

BB

Last Time
Unweighted Single-Source Shortest Paths:

Given graph and starting vertex

Find for every vertex , the distance

 length of shortest path from to

shortest fewest hops

G = (V , E) u
v d(u, v)

d(u, v) = u v
=

vertices
aka nodes

#gesg

Last Time
Unweighted Single-Source Shortest Paths:

Given graph and starting vertex

Find for every vertex , the distance

 length of shortest path from to

shortest fewest hops

G = (V , E) u
v d(u, v)

d(u, v) = u v
=

Solution: Breadth-!rst Search (BFS)

Process vertices in increasing order of distance from u

BFS Pseudocode

Correctness. Follows from interaction with queue: vertices
added in order of increasing distance from

 distance is correct when vertex added

 BFS(V, E, u):
 intialize d[v] <- -1 for all v
 d[u] <- 0
 queue.add(u)
 while queue is not empty do
 v <- queue.remove()
 for each neighbor w of v do
 if d[w] = -1 then
 d[w] <- d[v] + 1
 queue.add(w)
 return d

u
⟹

☐
- dist from u to ✓

^

•

-

w has
not been

examined before

BFS Phases

¥0

BFS Running Time?
 BFS(V, E, u):
 intialize d[v] <- -1 for all v
 d[u] <- 0
 queue.add(u)
 while queue is not empty do
 v <- queue.remove()
 for each neighbor w of v do
 if d[w] = -1 then
 d[w] <- d[v] + 1
 queue.add(w)
 return d

n = # vertices
,
mi # edges in a
¥ : show sum of

deg
of-

¥ *take0Ntime Ém
*

→⑧¥- ≤ n - e inner
iterations / ⇒ any*

running[
1 iteration Per vertex ¥¥÷
• for vertex V

,
inner loop iterates

•

◦ •

over neighbors ⇒ degas iterations

RT :O(deÉEn)) _-O④Ocmtn)↓

More General Problem
De!nition. A weighted graph is a graph where
each edge is additionally assigned a (real valued)
weight .

for now, assume

G(V , E)
e ∈ E

w(e)
w(e) ≥ 0

_

More General Problem
De!nition. A weighted graph is a graph where
each edge is additionally assigned a (real valued)
weight .

for now, assume

G(V , E)
e ∈ E

w(e)
w(e) ≥ 0

Examples.

weights = distances (not just number of hops)
weights = cost of connection
weights = latency of connection
…

Distance in Weighted Graphs
 a graph, weights

 a path

The (weighted) length of is

G = (V , E) w
P = ⋯v0e1v1e2v2 ekvk

P

w(P) = w() + w() + ⋯ + w()e1 e2 ek

--#

Example

P

was
¥/

= .

Weighted Shortest Paths
Given weights , de!ne to be minimum
(weighted) length of any path from to .

w (u, v)dw
P u v

Example

What is ? What about ?(1, 3)dw (1, 5)dw

Weighted SSSP
Input.

a weighted Graph , edge weights

an initial vertex

each vertex has associated adjacency list

list of ’s neighbors

includes weight of edge from to each neighbor

Output.

A map such that is the graph
distance from to

 indicates no path from to

G = (V , E) w
u ∈ V

v ∈ V
v

v

d : V → R d[v] = (u, v)dw
u v

d[v] = ∞ u v

=LET shortest Path

✓

-

Weighted SSSP
Does BFS compute weighted distances from ?

must update procedure
when processing edge , should update

 rather than setting

Does this work?

u

(v, x)
d[x]←d[v] + w(v, x) d[x]←d[v] + 1
-
-

-

\

"
→①as

? ,

-

Must be

shortest path
?

Weighted BFS Example Exercise
: check

BFS gives
wrong
ans w/

weights .

Issue
BFS processes vertices in order of fewest hops from
With weighted graphs, shortest path need not have
fewest hops

u

BFS Analysis Takeaway
BFS succeeds on unweighted graphs because closer
vertices are processed before farther vertices

Could we get similar behavior for weighted distances?

BFS Analysis Takeaway
BFS succeeds on unweighted graphs because closer
vertices are processed before farther vertices

Could we get similar behavior for weighted distances?

must ensure: vertices processed in order of weighted
distance from

how can we do this?

u

BFS Analysis Takeaway
BFS succeeds on unweighted graphs because closer
vertices are processed before farther vertices

Could we get similar behavior for weighted distances?

must ensure: vertices processed in order of weighted
distance from

how can we do this?

u

How could we e"ciently implement a modi!ed
procedure?

Dijkstra’s Algorithm
Idea. Process elements in order of weighted distance from

Maintain set of nodes whose distances from is
known
Find element that is closest to and add it to

u
S u

x ∈ V − S u
S ☐

↑x in V but nots

Dijkstra’s Algorithm in Detail
1. Initialize and for all

2. Maintain set of !nalized nodes, initially empty

3. Process nodes. While do:

!nd node in with minimal

add to

for each neighbor of

update

d[u] = 0 d[v] = ∞ v ≠ u
S

S ≠ V
v V − S d[v]

v S
x v

d[x]← min(d[x], d[v] + w(v, x))

d[v7 -

- dist from u to ✓

→
← some nodes not

finalized

prev estimate
of distance}

n①⇒ length
of min

path
from
u

to
✗ ending

w/

edge µ
×)

Dijkstra Illustration

1

7

8

3

4

9

2

5

62

3
2

4

4

1

1

1

1
3

4

3
2 2

1
0

2
.

3
.

4
.

5
.

6
.

7
.

8
.

9
.

v
d[v]

1

7

8

3

4

9

2

5

62

3
2

4

4

1

1

1

1
3

4

3
2 2

1
0

2
.

3
.

4
.

5
.

6
.

7
.

8
.

9
.

v
d[v]

1

7

8

3

4

9

2

5

62

3
2

4

4

1

1

1

1
3

4

3
2 2

1
0

2
.

3
.

4
.

5
.

6
.

7
3

8
2

9
.

v
d[v]

1

7

8

3

4

9

2

5

62

3
2

4

4

1

1

1

1
3

4

3
2 2

1
0

2
.

3
.

4
.

5
.

6
.

7
3

8
2

9
.

v
d[v]

↓

1

7

8

3

4

9

2

5

62

3
2

4

4

1

1

1

1
3

4

3
2 2

1
0

2
.

3
.

4
.

5
.

6
.

7
3

8
2

9
.

v
d[v]

1

7

8

3

4

9

2

5

62

3
2

4

4

1

1

1

1
3

4

3
2 2

1
0

2
.

3
6

4
.

5
.

6
.

7
3

8
2

9
3

v
d[v]

1

7

8

3

4

9

2

5

62

3
2

4

4

1

1

1

1
3

4

3
2 2

1
0

2
.

3
6

4
.

5
.

6
.

7
3

8
2

9
3

v
d[v]

↓ ↓

1

7

8

3

4

9

2

5

62

3
2

4

4

1

1

1

1
3

4

3
2 2

1
0

2
.

3
5

4
7

5
.

6
.

7
3

8
2

9
3

v
d[v]

%

1

7

8

3

4

9

2

5

62

3
2

4

4

1

1

1

1
3

4

3
2 2

1
0

2
.

3
5

4
7

5
.

6
.

7
3

8
2

9
3

v
d[v]

↓

1

7

8

3

4

9

2

5

62

3
2

4

4

1

1

1

1
3

4

3
2 2

1
0

2
6

3
4

4
7

5
.

6
4

7
3

8
2

9
3

v
d[v]

¥

1

7

8

3

4

9

2

5

62

3
2

4

4

1

1

1

1
3

4

3
2 2

1
0

2
6

3
4

4
7

5
.

6
4

7
3

8
2

9
3

v
d[v]

r r

1

7

8

3

4

9

2

5

62

3
2

4

4

1

1

1

1
3

4

3
2 2

1
0

2
6

3
4

4
6

5
.

6
4

7
3

8
2

9
3

v
d[v]

l

1

7

8

3

4

9

2

5

62

3
2

4

4

1

1

1

1
3

4

3
2 2

1
0

2
6

3
4

4
6

5
.

6
4

7
3

8
2

9
3

v
d[v]

t

1

7

8

3

4

9

2

5

62

3
2

4

4

1

1

1

1
3

4

3
2 2

1
0

2
6

3
4

4
6

5
5

6
4

7
3

8
2

9
3

v
d[v]

1

7

8

3

4

9

2

5

62

3
2

4

4

1

1

1

1
3

4

3
2 2

1
0

2
6

3
4

4
6

5
5

6
4

7
3

8
2

9
3

v
d[v]

L

1

7

8

3

4

9

2

5

62

3
2

4

4

1

1

1

1
3

4

3
2 2

1
0

2
6

3
4

4
6

5
5

6
4

7
3

8
2

9
3

v
d[v]

1

7

8

3

4

9

2

5

62

3
2

4

4

1

1

1

1
3

4

3
2 2

1
0

2
6

3
4

4
6

5
5

6
4

7
3

8
2

9
3

v
d[v]

1

7

8

3

4

9

2

5

62

3
2

4

4

1

1

1

1
3

4

3
2 2

1
0

2
6

3
4

4
6

5
5

6
4

7
3

8
2

9
3

v
d[v]

1

7

8

3

4

9

2

5

62

3
2

4

4

1

1

1

1
3

4

3
2 2

1
0

2
6

3
4

4
6

5
5

6
4

7
3

8
2

9
3

v
d[v]

1

7

8

3

4

9

2

5

62

3
2

4

4

1

1

1

1
3

4

3
2 2

1
0

2
6

3
4

4
6

5
5

6
4

7
3

8
2

9
3

v
d[v]

1

7

8

3

4

9

2

5

62

3
2

4

4

1

1

1

1
3

4

3
2 2

1
0

2
6

3
4

4
6

5
5

6
4

7
3

8
2

9
3

v
d[v]

Claim : these are
correct

distances from 1
.

Correctness
1. Initialize and for all

2. Maintain set of !nalized nodes, initially empty

3. Process nodes: while

!nd node in with minimal

add to

for each neighbor of

update

Claim. For every vertex , stores the correct
(weighted) distance .

d[u]←0 d[v]←∞ v ≠ u
S

S ≠ V
v V − S d[v]

v S
x v

d[x]← min(d[x], d[v] + w(v, x))
v ∈ S d[v]

(u, v)dw

Proof of Claim
Claim. For every vertex , stores the correct
(weighted) distance .

Proof. Use induction on size of . Set size of .

Base case . Only is added to . Set , which is
correct answer.

v ∈ S d[v]
(u, v)dw

S k = S
k = 1 u S d[u]←0

Inductive Step I
Inductive hypothesis. When contains elements, is
correct for all vertices .

Consider next iteration of outer loop:

 has

S k d[v]
v ∈ S

x d[x] = (d[v] + w(v, x))minv∈S

Inductive Step II
Must show: ; argue by contradiction

1. suppose

2. observe: there is a path from to of length

3.

4. there is a path from to of length

d[x] = (u, x)dw

d[x] ≠ (u, x)dw
u x d[x]

⟹ (u, x) < d[x]dw
⟹ P u x ℓ < d[x]

Shorter Path Illustration

Inductive Step III
Must show: ; argue by contradiction

1. suppose

2. observe: there is a path from to of length

3.

4. there is a path from to of length

5. must leave at some point

6. by de!nition of , any path from to must be longer
than

7. , which contradicts

Conclusion. , as claimed.

d[x] = (u, x)dw

d[x] ≠ (u, x)dw
u x d[x]

⟹ (u, x) < d[x]dw
⟹ P u x ℓ < d[x]

P S y
x u y

d[x]
⟹ w(P) ≥ d[x] 4

d[x] = (u, x)dw

Next Time
1. Implementing Dijkstra’s algorithm

how do we !nd with minimum e"ciently?
review heaps/priority queues

2. Minimum spanning tree problem

x d[x]

