
Lecture 16: Dijkstra’s
Algorithm

COSC 311 Algorithms, Fall 2022



Overview
1. Recap of DFS
2. Weighted Graphs
3. Weighted Shortest Paths
4. Dijkstra’s Algorithm

BB



Last Time
Unweighted Single-Source Shortest Paths:

Given graph  and starting vertex 

Find for every vertex , the distance 

 length of shortest path from  to 

shortest  fewest hops

G = (V , E) u
v d(u, v)

d(u, v) = u v
=

vertices
aka nodes

#gesg



Last Time
Unweighted Single-Source Shortest Paths:

Given graph  and starting vertex 

Find for every vertex , the distance 

 length of shortest path from  to 

shortest  fewest hops

G = (V , E) u
v d(u, v)

d(u, v) = u v
=

Solution: Breadth-!rst Search (BFS)

Process vertices in increasing order of distance from u



BFS Pseudocode

Correctness. Follows from interaction with queue: vertices
added in order of increasing distance from 

 distance is correct when vertex added

  BFS(V, E, u):
    intialize d[v] <- -1 for all v
    d[u] <- 0
    queue.add(u)
    while queue is not empty do
      v <- queue.remove()
      for each neighbor w of v do
        if d[w] = -1 then
          d[w] <- d[v] + 1
          queue.add(w)
    return d

u
⟹

☐
- dist from u to ✓

^

•

-

w has
not been

examined before



BFS Phases

¥0



BFS Running Time?
  BFS(V, E, u):
    intialize d[v] <- -1 for all v
    d[u] <- 0
    queue.add(u)
    while queue is not empty do
      v <- queue.remove()
      for each neighbor w of v do
        if d[w] = -1 then
          d[w] <- d[v] + 1
          queue.add(w)
    return d

n = # vertices
,
mi # edges in a
¥ : show sum of

deg
of-

¥ *take0Ntime Ém
*

→⑧¥- ≤ n - e inner
iterations / ⇒ any*

running[
1 iteration Per vertex ¥¥÷
• for vertex V

,
inner loop iterates

•

◦ •

over neighbors ⇒ degas iterations

RT :O(deÉEn)) _-O④Ocmtn)↓



More General Problem
De!nition. A weighted graph is a graph  where
each edge  is additionally assigned a (real valued)
weight .

for now, assume 

G(V , E)
e ∈ E

w(e)
w(e) ≥ 0

_



More General Problem
De!nition. A weighted graph is a graph  where
each edge  is additionally assigned a (real valued)
weight .

for now, assume 

G(V , E)
e ∈ E

w(e)
w(e) ≥ 0

Examples.

weights = distances (not just number of hops)
weights = cost of connection
weights = latency of connection
…



Distance in Weighted Graphs
 a graph,  weights

 a path

The (weighted) length of  is

G = (V , E) w
P = ⋯v0e1v1e2v2 ekvk

P

w(P) = w( ) + w( ) + ⋯ + w( )e1 e2 ek

--#



Example

P

was
¥/

= .



Weighted Shortest Paths
Given weights , de!ne  to be minimum
(weighted) length of any path  from  to .

w (u, v)dw
P u v



Example

What is ? What about ?(1, 3)dw (1, 5)dw



Weighted SSSP
Input.

a weighted Graph , edge weights 

an initial vertex 

each vertex  has associated adjacency list

list of ’s neighbors

includes weight of edge from  to each neighbor

Output.

A map  such that  is the graph
distance from  to 

 indicates no path from  to 

G = (V , E) w
u ∈ V

v ∈ V
v

v

d : V → R d[v] = (u, v)dw
u v

d[v] = ∞ u v

=LET shortest Path

✓

-



Weighted SSSP
Does BFS compute weighted distances from ?

must update procedure
when processing edge , should update 

 rather than setting 

Does this work?

u

(v, x)
d[x]←d[v] + w(v, x) d[x]←d[v] + 1
-
-

-

\

"
→①as

? ,

-

Must be

shortest path
?



Weighted BFS Example Exercise
: check

BFS gives
wrong
ans w/

weights .



Issue
BFS processes vertices in order of fewest hops from 
With weighted graphs, shortest path need not have
fewest hops

u



BFS Analysis Takeaway
BFS succeeds on unweighted graphs because closer
vertices are processed before farther vertices

Could we get similar behavior for weighted distances?



BFS Analysis Takeaway
BFS succeeds on unweighted graphs because closer
vertices are processed before farther vertices

Could we get similar behavior for weighted distances?

must ensure: vertices processed in order of weighted
distance from 

how can we do this?

u



BFS Analysis Takeaway
BFS succeeds on unweighted graphs because closer
vertices are processed before farther vertices

Could we get similar behavior for weighted distances?

must ensure: vertices processed in order of weighted
distance from 

how can we do this?

u

How could we e"ciently implement a modi!ed
procedure?



Dijkstra’s Algorithm
Idea. Process elements in order of weighted distance from 

Maintain set  of nodes whose distances from  is
known
Find element  that is closest to  and add it to 

u
S u

x ∈ V − S u
S ☐

↑x in V but nots



Dijkstra’s Algorithm in Detail
1. Initialize  and  for all 

2. Maintain set  of !nalized nodes, initially empty

3. Process nodes. While  do:

!nd node  in  with minimal 

add  to 

for each neighbor  of 

update 

d[u] = 0 d[v] = ∞ v ≠ u
S

S ≠ V
v V − S d[v]

v S
x v

d[x]← min(d[x], d[v] + w(v, x))

d[v7 -

- dist from u to ✓

→
← some nodes not

finalized

prev estimate
of distance}

n①⇒ length
of min

path
from
u

to
✗ ending

w/

edge µ
×)



Dijkstra Illustration
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Claim : these are
correct

distances from 1
.



Correctness
1. Initialize  and  for all 

2. Maintain set  of !nalized nodes, initially empty

3. Process nodes: while 

!nd node  in  with minimal 

add  to 

for each neighbor  of 

update 

Claim. For every vertex ,  stores the correct
(weighted) distance .

d[u]←0 d[v]←∞ v ≠ u
S

S ≠ V
v V − S d[v]

v S
x v

d[x]← min(d[x], d[v] + w(v, x))
v ∈ S d[v]

(u, v)dw



Proof of Claim
Claim. For every vertex ,  stores the correct
(weighted) distance .

Proof. Use induction on size of . Set  size of .

Base case . Only  is added to . Set , which is
correct answer.

v ∈ S d[v]
(u, v)dw

S k = S
k = 1 u S d[u]←0



Inductive Step I
Inductive hypothesis. When  contains  elements,  is
correct for all vertices .

Consider next iteration of outer loop:

 has 

S k d[v]
v ∈ S

x d[x] = (d[v] + w(v, x))minv∈S



Inductive Step II
Must show: ; argue by contradiction

1. suppose 

2. observe: there is a path from  to  of length 

3. 

4.  there is a path  from  to  of length 

d[x] = (u, x)dw

d[x] ≠ (u, x)dw
u x d[x]

⟹ (u, x) < d[x]dw
⟹ P u x ℓ < d[x]



Shorter Path Illustration



Inductive Step III
Must show: ; argue by contradiction

1. suppose 

2. observe: there is a path from  to  of length 

3. 

4.  there is a path  from  to  of length 

5.  must leave  at some point 

6. by de!nition of , any path from  to  must be longer
than 

7. , which contradicts 

Conclusion. , as claimed.

d[x] = (u, x)dw

d[x] ≠ (u, x)dw
u x d[x]

⟹ (u, x) < d[x]dw
⟹ P u x ℓ < d[x]

P S y
x u y

d[x]
⟹ w(P) ≥ d[x] 4

d[x] = (u, x)dw



Next Time
1. Implementing Dijkstra’s algorithm

how do we !nd  with minimum  e"ciently?
review heaps/priority queues

2. Minimum spanning tree problem

x d[x]


