Lecture 15: Graphs and

Distances
COSC 311 Algorithms, Fall 2022

Overview

1. Single Source Shortest Paths
2. Depth First Search &—

3. Weighted Graphs

4. Weighted Shortest Paths

More Bridges
Gephyrophobia = fear of bridges /7

Question. How to get from one landmass to another,
crossing the fewest possible number of bridges?

Strategy

Find shortest (fewest hops) route by:

1. ind all vertices reacl
9. find all vertices reac

hab.
hab.

3. find all vertices reac
4. ...

hab.

ein 1 hop
e in 2 hops

e in 3 hops

Continue until destination i1s found

[1lustration

D
Graph Distar}aé/ U&%ﬁ

Definition. QiV,E’) a graph, u,v € V vertices. The
graph distance between u and v, denoted d(u, v), is the
length of the shortest path from u to v in G.

What is &L}_}_’(What is@l, Sﬂ
L %

Single Source Shortest Paths (SSSP)

\Unweighted versionl

Input.

e a Graph G = (V,E)
e an initial VCI‘tCX@E Vv
o each vertex v € V has associated adjacency list

- list of v’s neighb = Vs A

ist of v's neighbors & A\’ 'S D

Output. i o

e Amap d}: V- {-1,0,1,2,...} such that d,(v) = d(u, v)
is the graph distance from u to v

= d[v] = r—aindicates no path from u to v

senkiad\ o\as—

Example

BFS Solution
Breadth-First Search

1. start at u

2. examine u’s neighbors, at distance 1
3. examine u’s neighbors’ neighbors, at distance 2

4.

Greedily examine closest vertices that have not yet been
examined...

\Queues
Abstract data type (ADT)

e stores elements
e two basic operations
= add(x) adds element x to queue

= remove() removes and returns element
e FIFO: first in, first out

aCde 8 flwmaved = oy

BFS(V, E u): C&C\l'] = —'\ meons
"Entialize d[v] <- -1 for all g? \l\Os\)C.Y\‘\ Y LN
\J

(du] <- oJ

Ar
’\"queue .add(u)3 %

while queue is not empty do \J|S M{%V\\)QJ_&

E<— queue.remove(ﬂ)/ c
' f
for each neighborfw|of v do o\-& \\&“Q&k S A\

if d[w] = -1 then — '\"<\M_ W \)(—QQ'\Q

s d[w] <- d[v] + 1

queue.add(w)

return d

BFS Illustration

cur

queue

d[v]

cur 1
queue || 7/
—-—
Vv 1121314]5]6 819
dlv] O |-1]-1]-1]-1]-1 -1]1-1
A

cur

queue 8
r
Vv 21314516 9
dlv] -11-1]-1]1-11-1 -1

cur

queue

d[v]

cur

queue

1 |
Y 314
d[v] -11-1

cur

queue

d[v]

cur

queue

d[v]

cur

queue

d[v]

cur

queue

d[v]

cur

queue

d[v]

cur

queue

d[v]

cur

queue

d[v]

cur

queue

d[v]

cur

queue

d[v]

cur

queue

d[v]

cur

queue

d[v]

cur

queue

d[v]

cur

queue

d[v]

cur 2

queue || 5| 6

dlv] O1312]1213]3]1]1

cur

queue

d[v]

cur

queue

d[v]

cur

queue

d[v]

cur 6

queue

dlv] O1312]1213]3]1]1

BFEFS Correctness

 Theorem. When BFS(V, E, u) terminates, for every
vertex v € V, d[v] stores the distance (minimum number
of hops) from u to v.

BFEFS Correctness

Theorem. When BFS(V, E, u) terminates, for every
vertex v € V, d[v] stores the distance (minimum number

of hops) from u to v.
Analysis. Break V into layers

= L contains only u
—» L, contains neighbors of u
—» L[, contains neighbors of neighbors of u
° :
~e L; contains vertices not in L, ..., L;_; but with at least
one neighborin L;_;

’

Layered Illustration

More Formally
Fori=0,1,2,..., Define L; by

o Lo = {uj
e [, =verticesnotin Ly, Ly, ..., L;_1 that have at least one
neighbor in L;_;

More Formally
Fori=0,1,2,..., Define L; by

* Lo = {u}

e [, =verticesnotin Ly, Ly, ..., L;_1 that have at least one
neighbor in L;_;

Claim. L; contains precisely the vertices in V at distance i

from u.

PeouL ‘Dy '\GCX\LK{{OV\ on ¢

Analysis of BFS
To Show

1. procedure finds vertices in increasing order of distance

2. distances are correctly computed when vertex is found
(added to queue)

Idea. Break execution of BFS into phases

—

e phase i starts when first element of L; is added to queue
e phase i ends when last element in L; is added to queue

A

Phase Illustration) didrna

2 0L l(l\\Y/QX >
’ ﬂ " \\ﬁ;e,
@\‘\’i\ '@ (3) Praes

YV Y
queue || 1 | 7 | 8 n 314 912 5 GJ\
Vv 112 |3|4]|5]6 819
d[v] © | 312123]|3]1]|1]2

Phase Claim

Claim. Consider an execution of BFS procedure. Then for
every phase i: A\ s Lo

‘1. phase i ends before phase i + 1 begins U‘Aé’é&x@j‘) o&y ‘nles

2. every vertex from L; is added to the queue in phase i
+ 3. each vertex v added in phase i has d[v] =i R ol m7

— J j‘} :
awm L
L/ %S \Mﬁ\ed
Tlawn

v Lo
ACV] = ¢

. Prious Qaiwa wWad "/\"“J‘, "C_ &\9}
J L, Aan C&@*J"\" C =i

Ca(¢ ch

Phase Claim

Claim. Consider an execution of BFS procedure. Then for
every phase i:

E. phase i ends before phase i + 1 begins
2. every vertex from L; is added to the queue in phase i
3. each vertex v added in phase i has d[v] = i

Proof. Use induction on i

Base case i = 0. u 1s the only element in Ly, and it is added
before any other elements, and d[u] is initialized to O.

To Show:
Inductive Step of Phase Claim Sawm Wolds

< i)
Elppose claim holds forj < i (inductive hypothesis)j :
hen: _—

e when phase i ends (1) all vertices from L; are in queue
and (2) no vertex in L;;; 1s in queue

e start removing elements in L; from qu\fble

e when v in L; is removed, any neighbors’in L;y; are
added to queue (if not already)

e distance is set toiZ_W]_ —i+1 &CV.]‘('\\ A
e every v in Liy; has neighbor in L, Nz L b\/ .\\’\V\‘{ 5
» — allv € L;;; are added to queue when last L; (
vertex is removed from queue —

e no vertex in L;;» added to queue to this point

L 3

= clom Wolds Lo Phase ¢

Conclusion

BFS(V, E, u):
intialize d[v] <- -1 for all v

d[u] <- 0
queue.add(u)
while queue is not empty do

v <- queue.remove()
for each neighbor w of v do
if d[w] = -1 then
diw] <- d[v] + 1
queue.add(w)

return d

BFS procedure correctly computes all distances from u!

G Wes M wxjc\us/ WA u&%ﬁ/
What is Running Time of BF SP——@CVX\L_V_})/

BFS(V, E, u): @ c 3 \
intialize d[v] <- -1 for all .\16— n

d[u] <- 0
queue.add(u)

while queue is not empty do

for each neighbor w of v do

_—

’:"
"if d[w] = -1 then |

’m] + 1 \ @'Q\\)

) queue.add(w)
returm d)

\U\/\u}c ~\5 {u«w\'\mz VAl . Dﬁ &d(&—&\lzhov& /
weu]) & o fog | GLC0y,
ot CK -t 00 (inled list

. eac s Qddd’-(& +o '\w\‘@\lﬂw\(n'ﬁams
Gupw- OF oyt One

\ v <- queue.remove()

[——

= Gmn) ~— Olmiw)
Consida CLW\o\/{m{, v fown qwe,w..

— S Xowaiwa \M..(fd\:\ Yo<s
OO werk Pl NJaV\\DoJ‘

- O(dcﬂﬁv))
AN ™
Toka! wovlk : Vi Vo ey Vi

G‘(&L“(V')) - 0(&*1(‘&.}) ... 0’(&?(%&))

= 0’(éﬁé"\) % C\L‘1(\’t_) t-o A’\%(V\l)
2

