
Lecture 15: Graphs and
Distances

COSC 311 Algorithms, Fall 2022

Overview
1. Single Source Shortest Paths
2. Depth First Search
3. Weighted Graphs
4. Weighted Shortest Paths

c-

More Bridges
Gephyrophobia = fear of bridges

Question. How to get from one landmass to another,
crossing the fewest possible number of bridges?

Strategy
Find shortest (fewest hops) route by:

1. !nd all vertices reachable in 1 hop
2. !nd all vertices reachable in 2 hops
3. !nd all vertices reachable in 3 hops
4. …

Continue until destination is found

Illustration

Graph Distances
De!nition. a graph, vertices. The
graph distance between and , denoted , is the
length of the shortest path from to in .

G = (V , E) u, v ∈ V
u v d(u, v)

u v G

vertices

edges

-

_

Example

What is ? What is ?d(1, 3) d(1, 5)

→

☒

Single Source Shortest Paths (SSSP)
Unweighted version

Input.

a Graph

an initial vertex

each vertex has associated adjacency list

list of ’s neighbors

Output.

A map such that
is the graph distance from to

 indicates no path from to

G = (V , E)
u ∈ V

v ∈ V
v

: V → {−1, 0, 1, 2, …}du (v) = d(u, v)du
u v

d[v] = −1 u v

I l

-

o

vertex

,

¥-0
dist .

from U

-

←

→ sentinel value

Example

⇒EEE'
¥¥ÉÉ÷

BFS Solution
Breadth-First Search

1. start at

2. examine ’s neighbors, at distance

3. examine ’s neighbors’ neighbors, at distance

4.

Greedily examine closest vertices that have not yet been
examined…

u
u 1
u 2

⋮

=
.

Queues
Abstract data type (ADT)

stores elements
two basic operations

add(x) adds element x to queue
remove() removes and returns element

FIFO: !rst in, !rst out

moral = order of
addition

BFS Pseudocode
 BFS(V, E, u):
 intialize d[v] <- -1 for all v
 d[u] <- 0
 queue.add(u)
 while queue is not empty do
 v <- queue.remove()
 for each neighbor w of v do
 if d[w] = -1 then
 d[w] <- d[v] + 1
 queue.add(w)
 return d

vertices
→ Get adj

. list of each
vtx

.

Edges
of graph

[

- starting vertex
dtv] = -1 means

]← haven't seen

t '
]

v yet

/ g-
V 's neighbors

- true if haven't
seen

w before
i - -

BFS Illustration

1
0

2
-1

3
-1

4
-1

5
-1

6
-1

7
-1

8
-1

9
-1

v
d[v]

1

7

8

3

4

9

2

5

6

queue 1

cur
:

1
0

2
-1

3
-1

4
-1

5
-1

6
-1

7
-1

8
-1

9
-1

v
d[v]

1

7

8

3

4

9

2

5

6

queue 1

cur 1

1
0

2
-1

3
-1

4
-1

5
-1

6
-1

7
1

8
-1

9
-1

v
d[v]

1

7

8

3

4

9

2

5

6

queue

cur 1

7
↑

↑ ↑

1
0

2
-1

3
-1

4
-1

5
-1

6
-1

7
1

8
1

9
-1

v
d[v]

1

7

8

3

4

9

2

5

6

queue

cur 1

7 8
↑

↑

1
0

2
-1

3
-1

4
-1

5
-1

6
-1

7
1

8
1

9
-1

v
d[v]

1

7

8

3

4

9

2

5

6

queue

cur

7 8

1
0

2
-1

3
-1

4
-1

5
-1

6
-1

7
1

8
1

9
-1

v
d[v]

1

7

8

3

4

9

2

5

6

queue

cur 7

8

I

1

It ↓

1
0

2
-1

3
2

4
2

5
-1

6
-1

7
1

8
1

9
-1

v
d[v]

1

7

8

3

4

9

2

5

6

queue

cur 7

8 3 4

1
0

2
-1

3
2

4
2

5
-1

6
-1

7
1

8
1

9
-1

v
d[v]

1

7

8

3

4

9

2

5

6

queue

cur

8 3 4

1
0

2
-1

3
2

4
2

5
-1

6
-1

7
1

8
1

9
-1

v
d[v]

1

7

8

3

4

9

2

5

6

queue

cur 8

3 4

↑

1
0

2
-1

3
2

4
2

5
-1

6
-1

7
1

8
1

9
2

v
d[v]

1

7

8

3

4

9

2

5

6

queue

cur 8

3 4 9

1
0

2
-1

3
2

4
2

5
-1

6
-1

7
1

8
1

9
2

v
d[v]

1

7

8

3

4

9

2

5

6

queue

cur

3 4 9

1
0

2
-1

3
2

4
2

5
-1

6
-1

7
1

8
1

9
2

v
d[v]

1

7

8

3

4

9

2

5

6

queue

cur 3

4 9

1
0

2
-1

3
2

4
2

5
-1

6
-1

7
1

8
1

9
2

v
d[v]

1

7

8

3

4

9

2

5

6

queue

cur

4 9

1
0

2
-1

3
2

4
2

5
-1

6
-1

7
1

8
1

9
2

v
d[v]

1

7

8

3

4

9

2

5

6

queue

cur 4

9

1
0

2
3

3
2

4
2

5
3

6
-1

7
1

8
1

9
2

v
d[v]

1

7

8

3

4

9

2

5

6

queue

cur 4

9 2 5

1
0

2
3

3
2

4
2

5
3

6
-1

7
1

8
1

9
2

v
d[v]

1

7

8

3

4

9

2

5

6

queue

cur

9 2 5

1
0

2
3

3
2

4
2

5
3

6
-1

7
1

8
1

9
2

v
d[v]

1

7

8

3

4

9

2

5

6

queue

cur 9

2 5

1
0

2
3

3
2

4
2

5
3

6
3

7
1

8
1

9
2

v
d[v]

1

7

8

3

4

9

2

5

6

queue

cur 9

2 5 6

1
0

2
3

3
2

4
2

5
3

6
3

7
1

8
1

9
2

v
d[v]

1

7

8

3

4

9

2

5

6

queue

cur

2 5 6

1
0

2
3

3
2

4
2

5
3

6
3

7
1

8
1

9
2

v
d[v]

1

7

8

3

4

9

2

5

6

queue

cur 2

5 6

1
0

2
3

3
2

4
2

5
3

6
3

7
1

8
1

9
2

v
d[v]

1

7

8

3

4

9

2

5

6

queue

cur

5 6

1
0

2
3

3
2

4
2

5
3

6
3

7
1

8
1

9
2

v
d[v]

1

7

8

3

4

9

2

5

6

queue

cur 5

6

1
0

2
3

3
2

4
2

5
3

6
3

7
1

8
1

9
2

v
d[v]

1

7

8

3

4

9

2

5

6

queue

cur

6

1
0

2
3

3
2

4
2

5
3

6
3

7
1

8
1

9
2

v
d[v]

1

7

8

3

4

9

2

5

6

queue

cur 6

1
0

2
3

3
2

4
2

5
3

6
3

7
1

8
1

9
2

v
d[v]

1

7

8

3

4

9

2

5

6

queue

cur

¥1.00
.

BFS Correctness
Theorem. When BFS(V, E, u) terminates, for every
vertex , stores the distance (minimum number
of hops) from to .

v ∈ V d[v]
u vI -

BFS Correctness
Theorem. When BFS(V, E, u) terminates, for every
vertex , stores the distance (minimum number
of hops) from to .

v ∈ V d[v]
u v

Analysis. Break into layers

 contains only

 contains neighbors of

 contains neighbors of neighbors of

 contains vertices not in but with at least
one neighbor in

V
L0 u
L1 u
L2 u
⋮
Lk , … ,L0 Lk−1

Lk−1

→
.

→

I
_

-

Layered Illustration

⇐EEF

More Formally
For , De!ne by

 vertices not in that have at least one
neighbor in

i = 0, 1, 2, … Li

= {u}L0
=Li , , … ,L0 L1 Li−1

Li−1

More Formally
For , De!ne by

 vertices not in that have at least one
neighbor in

i = 0, 1, 2, … Li

= {u}L0
=Li , , … ,L0 L1 Li−1

Li−1

Claim. contains precisely the vertices in at distance
from .

Li V i
u

Prove by induction on i

Analysis of BFS
To Show

1. procedure !nds vertices in increasing order of distance
2. distances are correctly computed when vertex is found

(added to queue)

Idea. Break execution of BFS into phases

phase starts when !rst element of is added to queue

phase ends when last element in is added to queue

i Li
i Li
-

I

Phase Illustration a) distance

(2) taxers

⑧⑧ (3) Phaies

¥.

Phase Claim
Claim. Consider an execution of BFS procedure. Then for
every phase :

1. phase ends before phase begins

2. every vertex from is added to the queue in phase

3. each vertex added in phase has

i
i i + 1

Li i
v i d[v] = i

-

all elts in Li

added to queue•

be for any inlet/
[

nothing•

from Li
is missed

• if u in Li then

div] = i
-

• Previous chain was that if alg
✓ in Li then dcusu) - i ⇒ is

correct

Phase Claim
Claim. Consider an execution of BFS procedure. Then for
every phase :

1. phase ends before phase begins

2. every vertex from is added to the queue in phase

3. each vertex added in phase has

i
i i + 1

Li i
v i d[v] = i

Proof. Use induction on

Base case . is the only element in , and it is added
before any other elements, and is initialized to .

i
i = 0 u L0

d[u] 0

'

-

.

Inductive Step of Phase Claim
Suppose claim holds for (inductive hypothesis).
Then:

when phase ends (1) all vertices from are in queue
and (2) no vertex in is in queue

start removing elements in from queue

when in is removed, any neighbors in are
added to queue (if not already)
distance is set to

every in has neighbor in

 all are added to queue when last
vertex is removed from queue

no vertex in added to queue to this point

j ≤ i

i Li
Li+1

Li
v Li Li+1

d[v] ← i + 1
v Li+1 Li

⟹ v ∈ Li+1 Li

Li+2

-

TO show :

claim holds
for it I

[]

-

-

-

- w
-

I -w _← *>+ \
uyp .

↑
_- I by incl .

-

⇒ claimholds for phase i.

Conclusion

BFS procedure correctly computes all distances from !

 BFS(V, E, u):
 intialize d[v] <- -1 for all v
 d[u] <- 0
 queue.add(u)
 while queue is not empty do
 v <- queue.remove()
 for each neighbor w of v do
 if d[w] = -1 then
 d[w] <- d[v] + 1
 queue.add(w)
 return d

u

What is Running Time of BFS?
 BFS(V, E, u):
 intialize d[v] <- -1 for all v
 d[u] <- 0
 queue.add(u)
 while queue is not empty do
 v <- queue.remove()
 for each neighbor w of v do
 if d[w] = -1 then
 d[w] <- d[v] + 1
 queue.add(w)
 return d

G : has n_ vertices, m edgiest /
-Ocmtn)

-

am

i.← ④ Cni /
-

FI

HE
④t is running time of add/remove
for queue ? Oct)

← true for array/
linked list

each vtx added to implementations
queue at most once

→ 01mn) - Ocmtn)

consider removing I from queue
→ examine neighbors

OCD work per neighbor
→ Ocdegcv))
t

≤ n

Total work : V
, V2 ,

- - -

,
Vu

Ocdegcui)) + O(degcu.at)t . . .tO(deglvnl)

=0CdeÉm_E)

