Lecture 02: Sorting and
Induction
COSC 311 Algorithms, Fall 2022

Announcements

1. Accountability groups (message today)

2. Ofhce hours
e Evening TA sessions Sunday, Wednesday (TBD)
e My drop-in: Thursday 11-12, 2-3 (?)
e By appointment: TBD

3. Emails: subject includes [COSC 311]

4. Section enrollment

5. Lecture ticket reminder (read solutions!)

Today

1. Sorting Task
2. Insertion Sort
3. Induction

Task: Sorting
Input:

e Sequence a of n numbers
eeg,a=17,7,5,2,3,19,5,13

Output:

e Asorted sequence s of same elements as a
» § contains same elements with same multiplicities as a
=S5 S8 S S8y

eeg,s =2,3,55,7,13,17,19

So Far

Sorting task is underspecified!

P what o allowed OpS.

< Now ,%ng 7 (\fQSQU\(ULS>
7

SPCQC/Q_
+ COMPGT (53 V)
: upqagwh%m

So Far

Sorting task is underspecified!

o Why?
1. representation
2. supported operations

So Far

Sorting task is underspecified!

o Why?
1. representation
2. supported operations

Examples:

e stack of exams
e array of numbers
e tasks by deadline

Each may support different operations & require different
techniques to solve efficiently

Going Forward

Spend ~2 weeks on sorting - T
e Elementary algorithms — Se(&ﬁ[ﬁ“g@‘r ('/ Lnse{ridn
= argue correctness (%Q(ORO(Q,SQ(Ir

o mathematical induction
= argue running time
o big O notation
e Divide-and-conquer algorithms
= algorithms: MergeSort, QuickSort, RadixSort
= argue running time
o “master method”

Sorting Arrays
Representation:

e g an array of size n
e all],al?],...,a[n] &

Supported Operations
o compare(a, I, j) —
» return true if g[i] > a[j] and false otherwise

e swap(a,i,j)
= before afi] = xand a[j] =y

» after a[i] = y and a[j] = x

Example

t 3 U

S
a=[17)[7,5,2,3

RERE
19, 5, 13]
k/“

;

e comparg(a, 2, 6)? —) Qm&SQ,

e swap(a, 2,5)?

x> Dp’h ‘5)3\,2}1/ lC(/

5_} (

d

Central Tenet

Break a large task into smaller subtasks.

[Lecture Ticket

Express “selection sort” in pseudocode

e find smallest element and put it at index 1
e find second smallest element and put it at index 2
e find third smallest element and put it at index 3

Example

e Sorting a small array:

Cgﬁr 7\, L{7 3}

AV

SelectionSort in Pseudocode

01 SelectionSort(a):

02 n <- size(a)

03 for j =1 ton -1 do
04 min <- j

05 for i = j+1 to n do

06 if compare(a, min, 1)
07 min <- i

08 endif

09 endfor

10 _))swap(a, J, min)e—\
11 endfor

Thinl ek T does Worle e %{g{é&jﬁi

/P(ow, QOHQQEV\L% \MWE[/\LWC«\(?CQUX7

Why does SelectionSort Work?

- Bd i vadwe 0 Ve
SYYE e QU\‘:S G

N @%&Q’\% P(&UL,

= ada S&ug SMCL{,Q,(LS @QCQMS&
5\ Q(Q\/\Q\Ai ?Lﬁﬁ Su Ceoaded.

Arguing Correctness

Goal. Logically deduce that algorithm succeeds on all
Inputs.

To do:

e specify task
e specity allowed operations and effects
e specify algorithm

demonstrate that on all possible inputs, algorithm
output satisfies task specification

A Remark

It may be “obvious” to you that SelectionSort works.

e give formal analysis of algorithm here

e introduce tools that will help when things become less
obvious

Specifying the Sorting Task
Input. Array a of numbers

Output. Sorted array s: (X bw&»\f S.

. —Wo\os W
S f:ontams the same elements as a o\ Ve \Pu[ahd,\g
s 18 sorted: s[1] < s[2] < -+ < sn] Q<@ 5&1@@3

e for everyindexi < n, s[i] < s[i + 1]

N

Allowed Operations

e compare(a, i, j): return true it ali] > aj]
e swap(a,i,J):

= before swap have a[i] = x and aj] =y
» after swap have a[i] = y and q[j] = x

Allowed Operations

e compare(a, i, j): return true if a[i] > a[j]

e swap(a,i,J):
» before swap have a[i] = xand q|j] =y
» after swap have a[i] = y and q[j] = x

Observation. If s is array formed from a by any sequence

of swap operations, then s and a contain the same
elements.

e Item (1) from sorting task is satisfied for any procedure
that only modifies the array with swaps

Next Step

Claim. The output of SelectionSort(a) is sorted.

SelectionSort(a):
n <- size(a)
for j =1 ton -1 do
min <- j
for i = j+1 to n do
if compare(a, min, i)

min <- i
endif
endfor
swap(a, Jj, min)
endfor
end

Questlon Why does 1terat10n j select jth smallest element
in the array?) o Guog o b

[Y =
TS ki J-1 sellst elts

Inductive Reasoning

Question. Why does iteration j select jth smallest element
in the array?

min <- j
for i = j+1 to n do
if compare(a, min, i)

min <- i
endif
endfor
swap(a, Jj, min)

Reason. (informal)

1. Loop in lines 5-9 selects smallest value in a[j..n]
2. Previous steps moved smaller values to a[1..j-1]

Moral. Step j succeeds because steps 1, 2,...,j-1
succeeded

e 1nductive reasoning

