Cheat Sheet

Principle of Induction. Suppose $P(1), P(2), P(3), \ldots$ is a sequence of predicates. Suppose we establish that (1) $P(1)$ is true (base case), and (2) for all i, if $P(i)$ is true, then $P(i+1)$ is also true (inductive step). Then for every $n, P(n)$ is true.
Properties of O. You freely assume and use the following properties of O notation:

1. If $f(n) \leq a$ for all n, then $f=O(1)$.
2. If $f(n) \leq g(n)$ for all n, then $f=O(g)$.
3. If $f=O(g)$, then $a \cdot f=O(g)$.
4. If $f=O(g)$ and $g=O(h)$, then $f=O(h)$.
5. If $f=O(g)$, then $f+O(g)=O(g)$ and $g+O(f)=O(g)$ (in particular $f+g=O(g))$
6. If $f_{1}=O\left(g_{1}\right)$ and $f_{2}=O\left(g_{2}\right)$, then $f_{1} \cdot f_{2}=O\left(g_{1} \cdot g_{2}\right)$.
7. If $a \leq b$ then $n^{a}=O\left(n^{b}\right)$
8. If $a<b$ then $n^{b} \neq O\left(n^{a}\right)$
9. For every constant $c>0, \log n=O\left(n^{c}\right)$
10. For all constants $c \geq 0$ and $a>1, n^{c}=O\left(a^{n}\right)$
11. If $f=O(g)$ then $g=\Omega(f)$
12. If $f=O(g)$ and $f=\Omega(g)$, then $f=\Theta(g)$.

Master Theorem. Suppose the function T satisfies the recurrence relation:

$$
T(n)=a T(n / b)+f(n)
$$

Define $c=\log _{b} a$. Then the following hold:

1. If $f(n)=O\left(n^{d}\right)$ for $d<c$ then $T(n)=O\left(n^{c}\right)$
2. If $f(n)=\Theta\left(n^{c} \log ^{k} n\right)$ then $T(n)=O\left(n^{c} \log ^{k+1} n\right)$
3. If $f(n)=\Omega\left(n^{d}\right)$ for $d>c$, then $T(n)=O(f(n))$
