Due: Friday, 10/21/2022 at 11:59 pm

Exercise 1. Suppose you are given an unsorted array a of size $n-1$ where $n=2^{B}$ that contains all of the numbers 0 through $n-1$ (in an arbitrary order) except for a single missing value m. The numbers are each represented in binary with B bits, so that $a[i]$ stores the i th number, and $a[i][j]$ is the j th bit of $a[i]$. Use the divide and conquer strategy to devise an algorithm that finds the missing value m using $O(n)$ bit comparison and swap operations. Use the Master Theorem to justify the running time of your procedure.

Hint. Note the similarity with the setup of RadixSort. While RadixSort uses $O(B n)$ bit comparisons and swap operations, your algorithm must use only $O(n)$ such operations.

Exercise 2. In class, we saw Dijkstra's algorithm for the single-source shortest path problem:

```
Dijkstra(V, E, u):
1. initialize \(d[u]=0\) and \([v]=\) infinity for all \(v\) != u
2. maintain set \(S\) of finalized nodes, initially empty
3. while \(S\) ! \(=\mathrm{V}\) do:
        find node \(v\) in \(V\) - \(S\) with minimal \(d[v]\)
        add \(v\) to \(S\)
        for each neighbor \(x\) of \(v\)
            update \(d[x]<-\min (d[x], d[v]+w(v, x))\)
        endfor
    endwhile
4. return d
```

For simplicity, we assumed that $V=\{1,2,3, \ldots, n\}$ so that d is an array where $d[x]$ stores the (weighted) distance from u to x. This array, however, does not give the actual path from u to x, but just the *length* of the shortest such path. Given a shortest path from u to $x, P=u e_{1} v_{1} e_{2} v_{2} \ldots v_{k-1} e_{k} x$, we say that v_{k-1} is x 's parent. That is, x 's parent is the next vertex from x along the shortest path from x to u. Observe that x 's parent v is x 's neighbor satisfying $d[x]=d[v]+w(v, x)$.

1. Write a modified version of Dijkstra called DijkstraPath that returns an array p such that for each vertex $x, p[x]$ stores x 's parent. Your algorithm should only differ from Dijkstra in a few lines of (pseudo)code.
2. Write a method GetPath ($\mathrm{p}, \mathrm{u}, \mathrm{x}$) that given the array p returned by DijkstraPath, GetPath ($\mathrm{p}, \mathrm{u}, \mathrm{x}$) returns the shortest path from u to x. That is, GetPath (p, u, $\mathrm{x})$ should return an array path of length $k+1$ where path $[1]=\mathrm{u}$, path $[\mathrm{k}+1]=$ x , and k is the number of hops on the shortest (weighted) path from u to x in G. The running time of GetPath (p, u, x) should be $O(k)$.
