Homework 02 COSC 311: Algorithms, Fall 2022

Due: Friday, 09/30/2022 at 11:59 pm

Exercise 1. In class we examined MergeSort and QuickSort as two divide-and-conquer
sorting algorithms. We showed that the worst-case running time of MergeSort is O(nlogn),
while the worst-case running time of QuickSort is O(n?). Nonetheless, we argued that if the
pivots in the QuickSort algorithm are chosen randomly, then the average running time is
O(nlogn). For this exercise, you should investigate the empirical running times of these two
sorting methods on large arrays. You may use either provided implementations (Sorting.javal,
SortTester.java) or you may implement your own versions of these methods in your language
of choice.

1. For a range of large array sizes (say, between 10,000 and 1,000, 000) plot the running
times of MergeSort and QuickSort of random arrrays of integers to compare the efficiency
of the two methods. Which tends to be faster? Do you find your results surprising? How
can you explain this difference in running time?

2. As we saw in the first assignment, for sorting small inputs, iterative algorithms such as
InsertionSort might be significantly faster than recursive procedures such as MergeSort. We
can exploit this behavior to speed up recursive procedures like MergeSort and QuickSort by
modifying the base case: when sorting a sufficiently small (portion of an) array, rather than
making a recursive call, we can invoke the procedure that is faster for small arrays. Modify
your MergeSort and QuickSort implementations in this way to try to make them as fast as
possible for large imputs (say, size 1,000,000). How much of a performance improvement
do you see for each algorithm? What parameters (i.e., base case size) give you the best
performance? (Note, you will have to modify your ”base-case” algorithm so that it only
sorts an array in a given range of indices, rather than the entire array.)

Exercise 2. In class and in the last assignment, we have considered five sorting algorithms:
SelectionSort, BubbleSort, InsertionSort, MergeSort, and QuickSort. Suppose your task is
to sort an array a of size n that is already almost sorted in the sense that every element in
a is stored at an index that is close to its index after a is sorted. Quantitatively, there is a
small number k (e.g., k = 5) such that the following holds: if a is the original array and s is
the array after sorting, then for every value v = afi], we have v = s[j] with | i — j |< k. That
is, sorting a does not move any element more than £ indices away from its original position.
In this scenario, what sorting algorithm would you expect to be most efficient, and why?

Challenge. For your chosen algorithm, derive a bound on the number operations it performs
as a function of both n and &.

Exercise 3. In class we proved that any sorting algorithm that relies on comparisons
of the form compare(a,i,j) to sort requires Q(nlogn) comparisons to sort arrays of size
n. On the other hand, we saw that when an array’s values are represented by B bits
each, the algorithm RadixSort sorts an array of size n using O(Bn) elementary operations.
In languages like Java and C/C++, ‘int* values are represented by B = 32 bits. Thus,
RadixSort uses O(32n) = O(n) elementary operations. Why does the O(n) running time of

/assets/java/2022f-cosc-311/hw02/Sorting.java
/assets/java/2022f-cosc-311/hw02/SortTester.java

RadixSort in this scenario not contradict the lower bound of Q(nlogn) that we proved for
all sorting algorithms?

Hint. Consider the simpler case of sorting values represented by B = 1 bits. That is, all
values are either 0 or 1. Does the Q(nlogn) lower bound apply to this case? Why or why
not?

Exercise 4. Suppose a is a sorted array of n distinct integer values. That is, a =
lai,az,...,a,] with a1 < as < ... < a,. (Note that some values may be negative.) We
say that a value a; is a fixed point if a; = 1.

1. Devise an algorithm that finds a fixed point of a if one exists, or (correctly) reports
that so fixed point exists that runs in time O(logn) time. (Hint. Since the a; are
sorted distinct integers, we have that for all indices ¢, j with j >4, a; —a; > j — 1.)

2. Argue that your algorithm does indeed have running time O(logn).

3. Suppose the elements of a are not assumed to be distinct (but are still sorted integer
values). Does your algorithm still work in this case? Why or why not? Is it possible
to divise an algorithm with running time O(logn) in this case?

